

63 Zillicoa Street Asheville, NC 28801 © Genova Diagnostics

Patient: SAMPLE PATIENT DOB:

Sex: MRN:

3000 NutrEval FMV - Urine and Blood **Results Overview** . amino acids organic acids nutrient & tox elements OXIDATIVE MITOCHONDRIAL TOXIC METHYLATION OMEGA DYSFUNCTION EXPOSURE STRESS IMBALANCE IMBALANCE essential & metabolic fatty acids dative stress. **Functional Imbalance Scores** 0-4 : Minimal Need for Support 5-7): Moderate Need for Support (8-10) : High Need for Support Key Need for Need for Need for Need for Need for Antioxidant Support **Mitochondrial Support** Inflammation Support **Reduced Exposure Methylation Support Oxidative Stress Mitochondrial Dysfunction** Omega Imbalance **Toxic Exposure** Methylation Imbalance 8 7 Cystine Glutathione Omega-3 Index Methylmalonic Acid ▼ Lead Cysteine CoQ10 Omega 6/3 Ratio V Methionine Mercury Lipid Peroxides α-Linolenic Acid a-Hydroxyisobutyric Acid Glutathione Magnesium 8-OHdG FIGLU Arachidonic Acid α-Ketophenylacetic Acid FIGLU Glutathione Methylmalonic Acid Linoleic Acid Arsenic Sarcosine Taurine Glutaric Acid Vanilmandelic Acid v-Linolenic Acid Cadmium Citric Acid Lactic Acid V Dihomo-y-linolenic Acid Pyroglutamic Acid Arginine **Cis-Aconitic Acid** Pyruvic Acid Orotic Acid Glycine Citric Acid Citric Acid Serine **Cis-Aconitic Acid Cis-Aconitic Acid** Creatinine Isocitric Acid Isocitric Acid V α-Ketoglutaric Acid Glutaric Acid

Succinic Acid

Malic Acid Adipic Acid Suberic Acid Manganese V

Ра	ige	2	

	Nutrient Need O	verview		
	Nutrient Need		Suggested	Provider
	0 1 2 3 4 5 6 7 8	9 10 DRI	Recommendations	Recommendations
Antioxidants				
Vitamin A	\bullet	3,000 IU	5,000 IU	
Vitamin C		90 mg	1,000 mg	
Vitamin E / Tocopherols		22 IU	200 IU	
α-Lipoic Acid			200 mg	
CoQ10			90 mg	
Glutathione				
Plant-based Antioxidants				
B-Vitamins				
Thiamin - B1		1.2 mg	10 mg	
Riboflavin - B2		1.3 mg	10 mg	
Niacin - B3		♦ 16 mg	50 mg	
Pyridoxine - B6		1.7 mg	25 mg	
Biotin - B7		30 mcg	100 mcg	
Folic Acid - B9	\bullet	400 mcg	800 mcg	
Cobalamin - B12	\bullet	2.4 mcg	500 mcg	
Minerals				
Magnesium		420 mg	800 mg	
Manganese		♦ 2.3 mg	7.0 mg	
Molybdenum		45 mcg	75 mcg	
Zinc		♦ 11 mg	30 mg	
Essential Fatty Acids				
Omega-3 Fatty Acids		6 500 mg	2,000 mg	
GI Support				
Digestive Support/Enzymes			10,000 IU	
Microbiome Support/Probiotics			10 billion CFU	
Vitamin D				
Vitamin D		600 IU	4,000 IU	
Amino Acids				
Arginine 1,149	Methionine 1,004		ge and gender-specific suppl	
Asparagine 1,129	Phenylalanine 1,111		ient functional need to optima ture. They are provided as gu	
Cysteine 671	Serine 2,015	support of nutritional de	ficiencies only.	
Glutamine 3,413	Taurine 1,448		view is provided at the reque	-
Glycine 4,485	Threonine 1,086	determined by the order	tion of it as a therapeutic inte ing practitioner.	avention is to de
Histidine 2,105	Tryptophan <u>638</u>			
Isoleucine 1,168	Tyrosine 1,149			
Leucine 2,314	Valine 1,328			
Lysine 2,381				

Interpretation At-A-Glance

Antioxidant Needs

Vitamin A / Carotenoids

- Beta-carotene & other carotenoids are converted to vitamin A (retinol), involved in vision, antioxidant & immune function, gene expression & cell growth.
- Vitamin A deficiency may occur with chronic alcoholism, zinc deficiency, hypothyroidism, or oral contraceptives containing estrogen & progestin.
- Deficiency may result in night blindness, impaired immunity, healing & tissue regeneration, increased risk of infection, leukoplakia or keratosis.
- Food sources include cod liver oil, fortified cereals & milk, eggs, sweet potato, pumpkin, carrot, cantaloupe, mango, spinach, broccoli, kale & butternut squash.

Vitamin E / Tocopherols

- Alpha-tocopherol (body's main form of vitamin E) functions as an antioxidant, regulates cell signaling, influences immune function and inhibits coagulation.
- Deficiency may occur with malabsorption, cholestyramine, colestipol, isoniazid, orlistat, olestra and certain anti-convulsants (e.g., phenobarbital, phenytoin).
- Deficiency may result in peripheral neuropathy, ataxia, muscle weakness, retinopathy, and increased risk of CVD, prostate cancer and cataracts.
- Food sources include oils (olive, soy, corn, canola, safflower, sunflower), eggs, nuts, seeds, spinach, carrots, avocado, dark leafy greens and wheat germ.

CoQ10

CoQ10 is a powerful antioxidant that is synthesized in the body and contained in cell membranes. CoQ10 is also essential for energy production & pH regulation.

- CoQ10 deficiency may occur with HMG-CoA reductase inhibitors (statins), several anti-diabetic medication classes (biguanides, sulfonylureas) or beta-blockers
- Low levels may aggravate oxidative stress, diabetes, cancer, congestive heart failure, cardiac arrhythmias, gingivitis and neurologic diseases.
- Main food sources include meat, poultry, fish, soybean, canola oil, nuts and whole grains. Moderate sources include fruits, vegetables, eggs and dairy.

Plant-based Antioxidants

- Oxidative stress is the imbalance between the production of free radicals and the body's ability to readily detoxify these reactive species and/or repair the resulting damage with anti-oxidants.
- Oxidative stress can be endogenous (energy production and inflammation) or exogenous (exercise, exposure to environmental toxins).
- Oxidative stress has been implicated clinically in the development of neurodegenerative diseases, cardiovascular diseases and chronic fatigue syndrome.
- Antioxidants may be found in whole food sources (e.g., brightly colored fruits & vegetables, green tea, turmeric) as well as nutraceuticals (e.g., resveratrol, EGCG, lutein, lycopene, ginkgo, milk thistle, etc.).

Vitamin C

- Vitamin C is an antioxidant (also used in the regeneration of other antioxidants). It is involved in cholesterol metabolism, the production & function of WBCs and antibodies, and the synthesis of collagen, norepinephrine and carnitine.
- Deficiency may occur with oral contraceptives, aspirin, diuretics or NSAIDs.
- Deficiency can result in scurvy, swollen gingiva, periodontal destruction, loose teeth, sore mouth, soft tissue ulcerations, or increased risk of infection.
- Food sources include oranges, grapefruit, strawberries, tomato, sweet red pepper, broccoli and potato.

a-Lipoic Acid

- α-Lipoic acid plays an important role in energy production, antioxidant activity (including the regeneration of vitamin C and glutathione), insulin signaling, cell signaling and the catabolism of α-keto acids and amino acids.
- High biotin intake can compete with lipoic acid for cell membrane entry.
- Optimal levels of α -lipoic acid may improve glucose utilization and protect against diabetic neuropathy, vascular disease and age-related cognitive decline.
- Main food sources include organ meats, spinach and broccoli. Lesser sources include tomato, peas, Brussels sprouts and brewer's yeast.

Glutathione

- Glutathione (GSH) is composed of cysteine, glutamine & glycine. GSH is a source of sulfate and plays a key role in antioxidant activity and detoxification of toxins.
- GSH requirement is increased with high-fat diets, cigarette smoke, cystinuria, chronic alcoholism, chronic acetaminophen use, infection, inflammation and toxic exposure.
- Deficiency may result in oxidative stress & damage, impaired detoxification, altered immunity, macular degeneration and increased risk of chronic illness.
- Food sources of GSH precursors include meats, poultry, fish, soy, corn, nuts, seeds, wheat germ, milk and cheese.

Function of Nutrient

Cause of Deficiency

Complications of Deficiency

Food Sources of Nutrient

KFY

B1 is a required cofactor for enzymes involved in energy production from food,

Low B1 can result from chronic alcoholism, diuretics, digoxin, oral contraceptives and HRT, or large amounts of tea & coffee (contain anti-B1 factors).

B1 deficiency may lead to dry beriberi (e.g., neuropathy, muscle weakness),

wet beriberi (e.g., cardiac problems, edema), encephalopathy or dementia.

B2 is a key component of enzymes involved in antioxidant function, energy

Low B2 may result from chronic alcoholism, some anti-psychotic medications,

B2 deficiency may result in oxidative stress, mitochondrial dysfunction, low uric acid, low B3 or B6, high homocysteine, anemia or oral & throat inflammation.

Food sources include milk, cheese, eggs, whole grains, beef, chicken, wheat

B3 is used to form NAD and NADP, involved in energy production from food,

Low B3 may result from deficiencies of tryptophan (B3 precursor), B6, B2 or Fe

B3 deficiency may result in pellagra (dermatitis, diarrhea, dementia), neurologic

symptoms (e.g., depression, memory loss), bright red tongue or fatigue. Food sources include poultry, beef, organ meats, fish, whole grains, peanuts,

seeds, lentils, brewer's yeast and lima beans

(cofactors in B3 production), or from long-term isoniazid or oral contraceptive

production, detoxification, methionine metabolism and vitamin activation.

oral contraceptives, tricyclic antidepressants, quinacrine or adriamycin.

germ, fish, broccoli, asparagus, spinach, mushrooms and almonds.

fatty acid & cholesterol synthesis, cell signaling, DNA repair & cell

meats, brewer's yeast, blackstrap molasses, spinach, milk & eggs.

Food sources include lentils, whole grains, wheat germ, Brazil nuts, peas, organ

and for the synthesis of ATP, GTP, DNA, RNA and NADPH.

Thiamin - B1

Riboflavin - B2

Niacin - B3

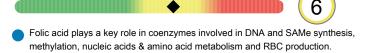
differentiation

use

Interpretation At-A-Glance

B-Vitamin Needs

Pyridoxine - B6


- B6 (as P5P) is a cofactor for enzymes involved in glycogenolysis & gluconeogenesis, and synthesis of neurotransmitters, heme, B3, RBCs and nucleic acids.
- Low B6 may result from chronic alcoholism, long-term diuretics, estrogens (oral contraceptives and HRT), anti-TB meds, penicillamine, L-DOPA or digoxin.
- B6 deficiency may result in neurologic symptoms (e.g., irritability, depression, seizures), oral inflammation, impaired immunity or increased homocysteine.
- Food sources include poultry, beef, beef liver, fish, whole grains, wheat germ, soybean, lentils, nuts & seeds, potato, spinach and carrots.

Biotin - B7

- Biotin is a cofactor for enzymes involved in functions such as fatty acid synthesis, mitochondrial FA oxidation, gluconeogenesis and DNA replication & transcription.
- Deficiency may result from certain inborn errors, chronic intake of raw egg whites, long-term TPN, anticonvulsants, high-dose B5, sulfa drugs & other antibiotics.
- Low levels may result in neurologic symptoms (e.g., paresthesias, depression), hair loss, scaly rash on face or genitals or impaired immunity.
- Food sources include yeast, whole grains, wheat germ, eggs, cheese, liver, meats, fish, wheat, nuts & seeds, avocado, raspberries, sweet potato and cauliflower.

Folic Acid - B9

- Low folate may result from alcoholism, high-dose NSAIDs, diabetic meds, H2 blockers, some diuretics and anti-convulsants, SSRIs, methotrexate, trimethoprim, pyrimethamine, triamterene, sulfasalazine or cholestyramine.
- Folate deficiency can result in anemia, fatigue, low methionine, increased homocysteine, impaired immunity, heart disease, birth defects and CA risk.
- Food sources include fortified grains, green vegetables, beans & legumes.

Cobalamin - B12

- B12 plays important roles in energy production from fats & proteins, methylation, synthesis of hemoglobin & RBCs, and maintenance of nerve cells, DNA & RNA.
- Low B12 may result from alcoholism, malabsorption, hypochlorhydria (e.g., from atrophic gastritis, H. pylori infection, pernicious anemia, H2 blockers, PPIs), vegan diets, diabetic meds, cholestyramine, chloramphenicol, neomycin or colchicine.
- B12 deficiency can lead to anemia, fatigue, neurologic symptoms (e.g., paresthesias, memory loss, depression, dementia), methylation defects or chromosome breaks.
- Food sources include shellfish, red meat poultry, fish, eggs, milk and cheese.

KEY

Function of Nutrient

Cause of Deficiency

Complications of Deficiency

Food Sources of Nutrient

Interpretation At-A-Glance

Mineral Needs

Manganese

- Magnesium is involved in >300 metabolic reactions. Key areas include energy production, bone & ATP formation, muscle & nerve conduction and cell signaling.
- Deficiency may occur with malabsorption, alcoholism, hyperparathyroidism, renal disorders (wasting), diabetes, diuretics, digoxin or high doses of zinc.
- Low Mg may result in muscle weakness/spasm, constipation, depression, hypertension, arrhythmias, hypocalcemia, hypokalemia or personality changes.
- Food sources include dark leafy greens, oatmeal, buckwheat, unpolished grains, chocolate, milk, nuts & seeds, lima beans and molasses.

Molybdenum

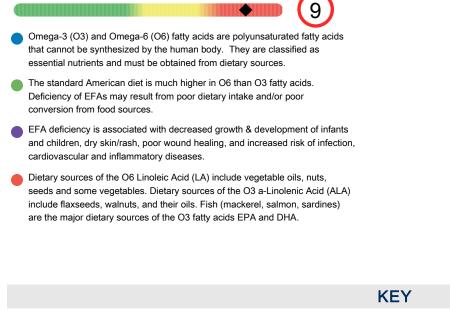
Magnesium

9

- Molybdenum is a cofactor for enzymes that convert sulfites to sulfate, and nucleotides to uric acid, and that help metabolize aldehydes & other toxins.
- Low Mo levels may result from long-term TPN that does not include Mo.
- Mo deficiency may result in increased sulfite, decreased plasma uric acid (and antioxidant function), deficient sulfate, impaired sulfation (detoxification), neurologic disorders or brain damage (if severe deficiency).
- Food sources include buckwheat, beans, grains, nuts, beans, lentils, meats and vegetables (although Mo content of plants depends on soil content).

10

- Manganese plays an important role in antioxidant function, gluconeogenesis, the urea cycle, cartilage & bone formation, energy production and digestion.
- Impaired absorption of Mn may occur with excess intake of Fe, Ca, Cu, folic acid, or phosphorous compounds, or use of long-term TPN, Mg-containing antacids or laxatives.
- Deficiency may result in impaired bone/connective tissue growth, glucose & lipid dysregulation, infertility, oxidative stress, inflammation or hyperammonemia.
- Food sources include whole grains, legumes, dried fruits, nuts, dark green leafy vegetables, liver, kidney and tea.


Zinc

- Zinc plays a vital role in immunity, protein metabolism, heme synthesis, growth & development, reproduction, digestion and antioxidant function.
- Low levels may occur with malabsorption, alcoholism, chronic diarrhea, diabetes, excess Cu or Fe, diuretics, ACE inhibitors, H2 blockers or digoxin.
- Deficiency can result in hair loss and skin rashes, also impairments in growth & healing, immunity, sexual function, taste & smell and digestion.
- Food sources include oysters, organ meats, soybean, wheat germ, seeds, nuts, red meat, chicken, herring, milk, yeast, leafy and root vegetables.

Essential Fatty Acid Needs

Need for Essential Fatty Acids

Function of Nutrient

Cause of Deficiency

Complications of Deficiency

Food Sources of Nutrient

Interpretation At-A-Glance

Microbiome & Digestive Support

Need for Probiotics

- Probiotics have many functions. These include: production of some B vitamins and vitamin K; enhance digestion & absorption; decrease severity of diarrheal illness; modulate of immune function & intestinal permeability.
- Alterations of gastrointestinal microflora may result from C-section delivery, antibiotic use, improved sanitation, decreased consumption of fermented foods and use of certain drugs.
- Some of the diseases associated with microflora imbalances include: IBS, IBD, fibromyalgia, chronic fatigue syndrome, obesity, atopic illness, colic and cancer.
- Food sources rich in probiotics are yogurt, kefir and fermented foods.

Need for Pancreatic Enzymes

- Pancreatic enzymes are secreted by the exocrine glands of the pancreas and include protease/peptidase, lipase and amylase.
- Pancreatic exocrine insufficiency may be primary or secondary in nature. Any indication of insufficiency warrants further evaluation for underlying cause (i.e., celiac disease, small intestine villous atrophy, small bowel bacterial overgrowth).
- A high functional need for digestive enzymes suggests that there is an impairment related to digestive capacity.
- Determining the strength of the pancreatic enzyme support depends on the degree of functional impairment. Supplement potency is based on the lipase units present in both prescriptive and non-prescriptive agents.

Functional Imbalances

Mitochondrial Dysfunction

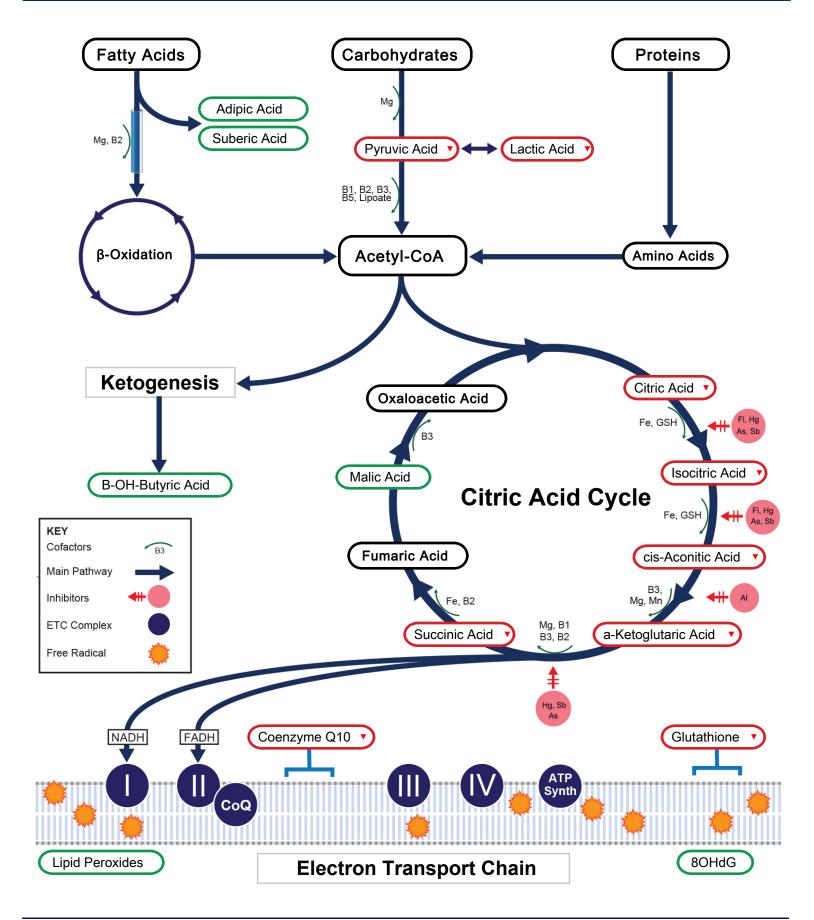
- Mitochondria are a primary site of generation of reactive oxygen species.
 Oxidative damage is considered an important factor in decline of physiologic function that occurs with aging and stress.
- Mitochondrial defects have been identified in cardiovascular disease, fatigue syndromes, neurologic disorders such as Parkinson's and Alzheimer's disease, as well as a variety of genetic conditions. Common nutritional deficiencies can impair mitochondrial efficiency.

Toxic Exposure

- Methyl tert-Butyl Ether (MTBE) is a common gasoline additive used to increase octane ratings, and has been found to contaminate ground water supplies where gasoline is stored. Inhalation of MTBE may cause nose and throat irritation, as well as headaches, nausea, dizziness and mental confusion. Animal studies suggest that drinking MTBE may cause gastrointestinal irritation, liver and kidney damage and nervous system effects.
- Styrene is classified by the US EPA as a "potential human carcinogen," and is found widely distributed in commercial products such as rubber, plastic, insulation, fiberglass, pipes, food containers and carpet backing.
- Levels of these toxic substances should be examined within the context of the body's functional capacity for methylation and need for glutathione.

Need for Methylation

- Methylation is an enzymatic process that is critical for both synthesis and inactivation. DNA, estrogen and neurotransmitter metabolism are all dependent on appropriate methylation activity.
- B vitamins and other nutrients (methionine, magnesium, selenium) functionally support catechol-O-methyltransferase (COMT), the enzyme responsible for methylation.


Function of Nutrient

Cause of Deficiency

Complications of Deficiency

Food Sources of Nutrient

Oxidative Stress & Mitochondrial Dysfunction

Page 7

All biomarkers reported in mmol/mol creatinine unless otherwise noted.

Malabsorption & Dysbiosis Markers

Malabsorption Markers		Reference Range	Branch-Chain Ca	tabolites (B1, B2, B3, ALA)	Reference Range
Indoleacetic Acid	0.3	<= 4.2	α-Ketoadipic Acid	0.4	<= 1.7
Phenylacetic Acid	0.04	<= 0.12	α-Ketoisovaleric Acid	0.49	<= 0.97
Dysbiosis Marke	rs		α-Ketoisocaproic Acid	0.22	<= 0.89
Dihydroxyphenylpropioni Acid (DHPPA)	0.3	<= 5.3	α-Keto-β-Methylvaleric Acid	0.4	<= 2.1
3-Hydroxyphenylacetic Acid	0.4	<= 8.1	Glutaric Acid	0.02	<= 0.51
4-Hydroxyphenylacetic Acid	2	<= 29	Isovalerylglycine	0.4	<= 3.7
Benzoic Acid	0.01	<= 0.05	Methylation Mark	ers (Folate, B12)	
Hippuric Acid	2	<= 603	Formiminoglutamic Acid (FIGlu)	0.7	<= 1.5
Yeast / Fungal D	ysbiosis Markers		Methylmalonic Acid	0.5	<= 1.9
D-Arabinitol	1	<= 36	Biotin Markers		
Citramalic Acid	0.4	<= 5.8	3-Hydroxypropionic Acid	3	5-22
Tartaric Acid		<= 15	3-Hydroxyisovaleric Acid	2	<= 29
Cellular Energy	y & Mitochondrial Markers		Neurotransmitte	er Metabolites	
Fatty Acid Metab	olism	Reference Range	Kynurenine Mark	ers (Vitamin B6)	Reference Range
Adipic Acid	0.4	<= 2.8	Kynurenic Acid	0.3	<= 7.1
Suberic Acid	0.3	<= 2.1	Quinolinic Acid	0.3	<= 9.1
Carbohydrate Me	etabolism		Kynurenic / Quinolinic Ratio	1.00	>= 0.44
Pyruvic Acid	3	7-32	Xanthurenic Acid	0.28	<= 0.96
Lactic Acid	0.6	1.9-19.8	Catecholamine M	larkers	
α-Hydroxybutyric Acid	0.27	<= 0.83	Homovanillic Acid	1.1	1.2-5.3
β-OH-Butyric Acid	0.5	<= 2.8	Vanilmandelic Acid	0.3	0.4-3.6
β-OH-β-Methylglutaric Acid		<= 15	3-Methyl-4-OH- phenylglycol	0.01	0.02-0.22
Energy Metabolis	sm		Serotonin Marker	ſS	
Citric Acid	6	40-520	5-0H-indoleacetic Acid	1.8	3 8-12 1

Citric Acid	6 •	40-520
cis-Aconitic Acid	2	10-36
Isocitric Acid		22-65
α-Ketoglutaric Acid	3	4-52
Succinic Acid	0.2	0.4-4.6
Malic Acid	0.4	<= 3.0

Methodology: GCMS, LC/MS/MS, Alkaline Picrate, Colorimetric Metabolic Analysis Reference Ranges are Age Specific

© Genova Diagnostics · A. L. Peace-Brewer, PhD, D(ABMLI), Lab Director · CLIA Lic. #34D0655571 · Medicare Lic. #34-8475

5-OH-indoleacetic Acid

α-Ketophenylacetic Acid

 α -Hydroxyisobutyric Acid

Pyroglutamic Acid

(from Styrene)

(from MTBE)

Orotic Acid

4

0.19

٠

0.5

0.18

Toxin & Detoxification Markers

0.33-1.01

3.8-12.1 Reference Range

16-34

<= 0.46

<= 6.7

ID:

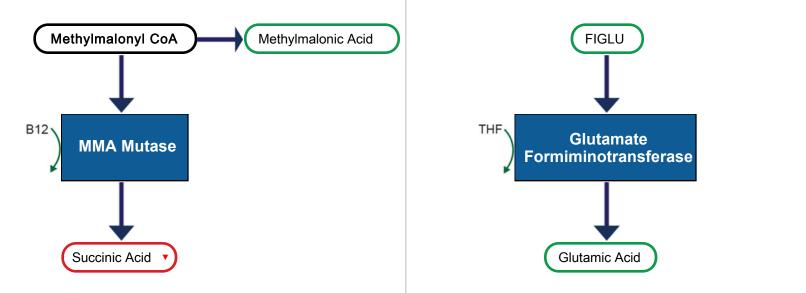
Organic Acids

Vitamin Markers

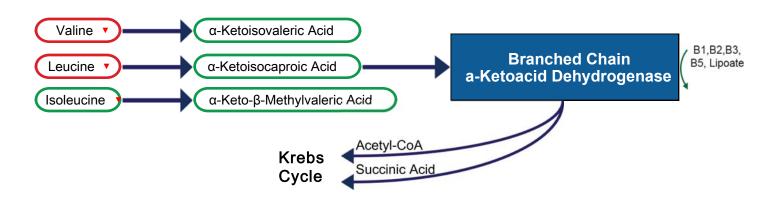
Patient: SAMPLE PATIENT

ID:

Page 9


Methodology: Colorimetric, thiobarbituric acid reactive substances (TBARS), Alkaline Picrate, Hexokinase/G-6-PDH, HPLC, GC/MS

Organic Acids						
Oxalate Markers		Reference Range	Creatinine Concentration	Reference Range		
Glyceric Acid	1.0	3.5-16.4	Creatinine + 8.8	3.1-19.5		
Glycolic Acid	0	<= 67		mmol/L		
Oxalic Acid	0	<= 78				
All biomarkers reported	ed in mmol/mol creatinine.					



Methylation Markers

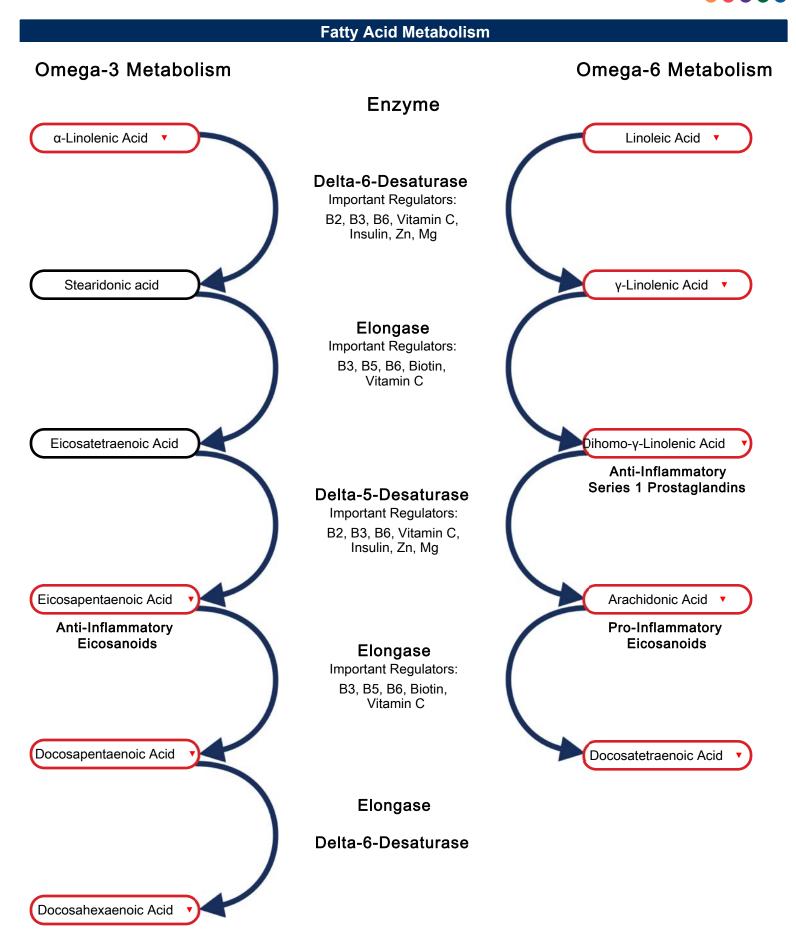
Branch-Chain Amino Acid Metabolism

ID:

		Amino Ad	ids (FMV)	
Nutritionally			Intermediary Metabolites	
	Essential Amino Acids	Reference		Referenc
Amino Acid		Range	B-Vitamin Markers	Range
Arginine	2	3-43	α-Aminoadipic	6-56
Histidine		102-763	α-Amino-N-butyric Acid	2-21
Isoleucine	<di< td=""><td>3-25</td><td>β-Aminoisobutyric Acid</td><td>4-194</td></di<>	3-25	β-Aminoisobutyric Acid	4-194
Leucine		6-61	Cystathionine	4-48
Lysine		15-231	Urea Cycle Markers	
Methionine		2-16	0.5 Citrulline	0.7-3.4
Phenylalanine		7-92	Ornithine 1	3-17
Taurine		39-568	107 ∪rea •	150-380 mmol/g creatinir
Threonine		9-97	Glycine/Serine Metabolites	mmoi/g creatinir
Tryptophan		8-58	16 Glycine	47-435
Valine		5-43	8 Serine	24-140
Nonessential	Protein Amino Acids		2	
Amino Acid		Reference Range	Ethanolamine	40-226
Alanine	1	26-275	Phosphoethanolamine	1-9
Asparagine	4	12-115	Phosphoserine 0.3	2-13
	<dl< td=""><td><= 9</td><td>Sarcosine</td><td><= 1.0</td></dl<>	<= 9	Sarcosine	<= 1.0
Aspartic Acid	4		Dietary Peptide Related Markers	Referenc Range
Cysteine	4	9-60 10-116	0.5 Anserine (dipeptide)	0.7-76.
	1		Carnosine (dipeptide)	1-32
γ-Aminobutyric Acid	<dl< td=""><td><= 3</td><td>1 1-Methylhistidine</td><td>18-887</td></dl<>	<= 3	1 1-Methylhistidine	18-887
Glutamic Acid	4	2-16	3-Methylhistidine	47-232
Glutamine	0	85-518	β-Alanine	<= 18
Proline	8	1-9		
Tyrosine		19-135		
Creatinine Co	oncentration	Reference Range		
Creatinine •	8.8	3.1-19.5		
-		mmol/L		

Amino Acid reference ranges are age specific.

Methodology: LC/MS/MS, Alkaline Picrate


Methodology: GCMS

ID:	
Essential & Metabolic Fatty Acids Markers (PBCs)	

Pa	ige	11	
			-
	$\mathbf{}$	$\mathbf{}$	~

Essential & Metabolic Fatty Acids Markers (RBCs)					
Omega-3 Fa	tty Acids		Omega-6 Fatty Acids		
Analyte		Reference Range	Analyte Referen Range		
α-Linolenic (ALA) 18:3 n3 Eicosapentaenoic (EPA) 20:5 n3	(cold water fish, flax, walnut) 0.05 0.15 1.00	>= 0.09 wt %	Linoleic (LA) 18:2 n6 γ-Linolenic (GLA) 18:3 n6 (GLA) 18:3 n6 (GLA) 18:3 n6 (GLA) 18:3 n6 (GLA) 10.5-16.9 w 0.02 (0.03-0.13 w		
Docosapentaenoic (DPA) 22:5 n3 Docosahexaenoic	1.0	>= 1.14 wt %	Dihomo-γ-linolenic >= 1.19 wt % (DGLA) 20:3 n6 10 Arachidonic 15-21 wt %		
(DHA) 22:6 n3 % Omega-3s	3.0	>= 3.8	(AA) 20:4 n6 Docosatetraenoic (DTA) 22:4 n6 0.01 0.01		
Omega-9 Fa	tty Acids		Eicosadienoic 20:2 n6 <= 0.26 wt 9		
Analyte		Reference Range	25.0 % Omega-6s ◆ 30.5-39.7		
Oleic 18:1 n9	(olive oil)	10-13 wt %	Monounsaturated Fatty Acids		
Nervonic 24:1 n9	1.0	2.1-3.5 wt %	Omega-7 Fatty Acids		
% Omega-9s	10.0	13.3-16.6	Palmitoleic 16:1 n7 Vaccopia 0.01 • • • • • • • • • • • • • • • • • • •		
Saturated Fa	atty Acids		Vaccenic 18:1 n7 <		
Analyte		Reference Range	Trans Fats		
Palmitic C16:0	(meat, dairy, coconuts, palm oils) 15 10	18-23 wt %	Elaidic 0.01 <= 0.59 wt 9		
Stearic C18:0		14-17 wt %	Delta-6-Desaturase Activity		
Arachidic C20:0 Behenic	0.20	0.22-0.35 wt %	Upregulated Functional Impaired 5.0 Linoleic / DGLA 18:2 n6 / 20:3 n6		
C22:0	0.10	0.92-1.68 wt %	Cardiovascular Risk		
Tricosanoic C23:0	1.0	0.12-0.18 wt %	Analyte Referen Range		
Lignoceric C24:0		2.1-3.8 wt %	30		
Pentadecanoic C15:0	0.05	0.07-0.15 wt %	Omega-6s / 3.4-10.7		
Margaric C17:0	0.20	0.22-0.37 wt %	AA / EPA 12-125 20:4 n6 / 20:5 n3 3.0		
% Saturated Fats	35.0	39.8-43.6	Omega-3 Index >= 4.0		
			The Essential Fatty Acid reference ranges are based on an adult population.		

Page 12

ID:

Methodology: ICF	P-MS				
		Elementa	I Markers		
Nutrient	Elements		Toxic Elem	ents*	
Element		Reference Range	Element		Reference Range
Copper (<i>plasma</i>) Magnesium (<i>RBC</i>) Manganese (<i>whole blood</i>) Potassium	0.1 25.0 2.0 2.0	75.3-192.0 mcg/dL 30.1-56.5 mcg/g 3.0-16.5 mcg/L 2,220-3,626 mcg/g	Lead Mercury Arsenic Cadmium	0.50 1.00 0.50	<= 2.81 mcg/dL <= 4.35 mcg/L <= 13.7 mcg/L <= 1.22 mcg/L
<i>(RBC)</i> Selenium <i>(whole blood)</i> Zinc <i>(plasma)</i>	100 3 0.0	109-330 mcg/L 64.3-159.4 mcg/dL	* All toxic Elements	s are measured in whole blood. The refere d Cadmium are derived from the 95th pere	ence ranges for

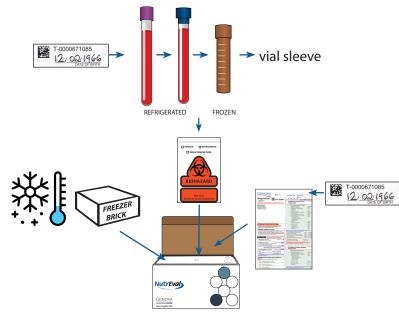
The Elemental reference ranges are based on an adult population.

Elemental testing performed by Genova Diagnostics, Inc. 3425 Corporate Way, Duluth, GA 30096 - Robert M. David, PhD, Lab Director - CLIA Lic. #11D0255349 - Medicare Lic. #34-8475

Vitamin D (Serum)						
Methodology: Cher	miluminescent	Result		Reference Range		
25 - Hydroxyvit	amin D ◆	4	L	30-100 ng/mL	There is no consensus in the literature regarding optimal levels	
Deficiency: Insufficiency: Sufficient: Recommended: Excessive:	<20 ng/mL 20-29 ng/mL 30-100 ng/mL 50-80 ng/mL >100 ng/mL				of 25-Hydroxyvitamin D. Higher levels of 25-Hydroxyvitamin D may be concerning in patients with renal failure. Levels below 30 ng/mL are considered insufficient by most medical associations	

Reference:

Holick MF, et al. *J Clin Endocrinol Metab*.2011;96(7):1911-1930. Vitamin D Council: https://www.vitamindcouncil.org/


The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Unless otherwise noted with •, the assay has not been cleared by the U.S. Food and Drug Administration.

FINAL PREP AND SHIPPING

- **1. Place biohazard bag with blood tubes, frozen freezer brick,** and absorbent material in foam insulator box inside the outer collection box.
- 2. Make sure patient urine and cheek swab collections (if ordered) are included

RETURN CHECKLIST

- All tubes with peel and stick labels with patient's date of birth
- FROZEN AMBER TRANSFER TUBE
- REFRIGERATED EDTA LAVENDER-TOP TUBE
- REFRIGERATED NA-EDTA BLUE-TOP, K2-EDTA BLUE-TOP, OR NA HEPARIN TUBE
- TEST REQUISITION
- All frozen urine tubes Inside biohazard bag with absorbent pads
- Cheek swabs (if ordered)
- All materials and frozen freezer brick Inside Genova Box

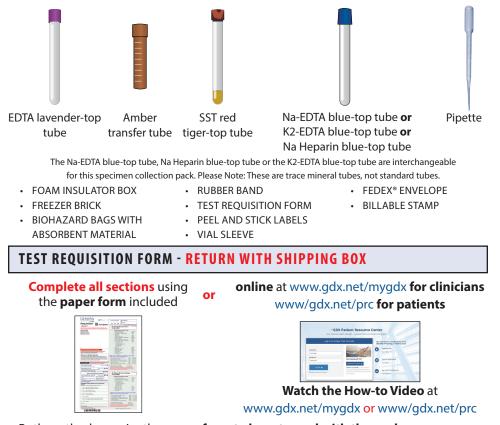
SHIP THE SPECIMEN(S) TO THE LAB

Specimen(s) must be returned in the Genova Diagnostics box. Please refer to the shipping instruction insert found in your collection box.

Clinician Collection Instructions

For Test **#3000**

Test prep, FAQs, and the collection video can be found at **www.gdx.net/nutrevalprep** or **scan the QR Code**.



Shipping Notice:

Finish collection and ship **Monday through Friday**. US holidays can affect shipping times.

COLLECTION MATERIALS - KEEP OUTER BOX FOR SHIPPING TO LAB

CLINICIAN BLOOD DRAW COLLECTION

Both methods require the paper form to be returned with the pack.

PEEL AND STICK COLLECTION LABELS

Fill out all the peel and stick labels with patient's date of birth (DOB) (mm/dd/yyyy)

and **apply to all the tubes**, the swab envelope, and the requisition. There may be extra labels left over.

Do not write on the tubes.

IMPORTANT PREP BEFORE COLLECTION

• Abnormal kidney function or use of diuretics may influence test results.

MEDICATIONS MAY IMPACT RESULTS

 Discontinuing medications is at the discretion of the physician. Valproic acid, acetaminophen, and berberine HCI can interfere with select analytes.

4 DAYS BEFORE THE TEST:

- Some clinicians choose to discontinue nonessential nutritional supplements to get a "baseline" reading.
- Some clinicians choose to continue nutritional supplementation to assess the efficacy of treatments.

24 HOURS BEFORE THE TEST:

- Patient should eat their usual diet. Avoid over-consuming any single food or extreme diets.
- Fluid intake should be limited to six 8-ounce glasses of fluid.

NIGHT BEFORE THE TEST:

- Patients must fast overnight prior to the blood draw.
- Freeze the enclosed freezer brick a minimum of 8 hours before shipping.

REMIND THE PATIENT:

 All patient's urine tubes must be frozen a minimum of 2 hours prior to blood draw appointment.

For more details, please visit www.gdx.net/tests/prep

BLOOD COLLECTION

Please collect all tubes in one session.

Label each tube with the patient's date of birth using peel and stick labels.

3

- **Clean** the skin thoroughly with isopropyl alcohol before venipuncture, and use only stainless steel needles
- DRAW BLOOD Use rubber band if needed
- 4

BLOOD PROCESSING: (Must be completed within 45 minutes after blood collection.)

NA-EDTA, K2-EDTA, OR NA HEPARIN BLUE-TOP TUBE

Gently invert the tube 10-15 times Refrigerate

RETURN TO LAB

RED SST TIGER-TOP TUBE

Clot for 15 min. while standing in a rack **Centrifuge** 15 min. at 3000 RPM **Transfer** serum to amber transfer tube AMBER TRANSFER TUBE Freeze RETURN TO LAB

DISCARD

EDTA LAVENDER TOP TUBE Gently invert 5 times Do not shake Refrigerate RETURN TO LAB