




Patient:

DOB:

Sex: MRN:

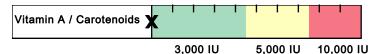


# SUGGESTED SUPPLEMENT SCHEDULE

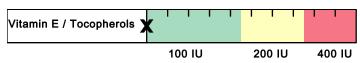
| Supplements             | Daily<br>Recommended<br>Intake (DRI) | Patient's Daily<br>Recommendations | Provider Daily Recommendations |
|-------------------------|--------------------------------------|------------------------------------|--------------------------------|
| Antioxidants            |                                      |                                    |                                |
| Vitamin A / Carotenoids | 2,333 IU                             | 3,000 IU                           |                                |
| Vitamin C               | 75 mg                                | 500 mg                             |                                |
| Vitamin E / Tocopherols | 22 IU                                | 100 IU                             |                                |
| α-Lipoic Acid           |                                      | 200 mg                             |                                |
| CoQ10                   |                                      | 30 mg                              |                                |
| B-Vitamins              |                                      |                                    |                                |
| Thiamin - B1            | 1.1 mg                               | 10 mg                              |                                |
| Riboflavin - B2         | 1.1 mg                               | 10 mg                              |                                |
| Niacin - B3             | 14 mg                                | 30 mg                              |                                |
| Pyridoxine - B6         | 1.5 mg                               | 50 mg                              |                                |
| Biotin - B7             | 30 mcg                               | 100 mcg                            |                                |
| Folic Acid - B9         | 400 mcg                              | 1,200 mcg                          |                                |
| Cobalamin - B12         | 2.4 mcg                              | 1,000 mcg                          |                                |
| Minerals                |                                      |                                    |                                |
| Magnesium               | 320 mg                               | 400 mg                             |                                |
| Manganese               | 1.8 mg                               | 3.0 mg                             |                                |
| Molybdenum              | 45 mcg                               | 75 mcg                             |                                |
| Zinc                    | 8 mg                                 | 10 mg                              |                                |
| Essential Fatty Acids   |                                      |                                    |                                |
| Omega-3 Oils            | 500 mg                               | 1,000 mg                           |                                |
| Digestive Support       |                                      |                                    |                                |
| Probiotics              |                                      | 10 billion CFU                     |                                |
| Pancreatic Enzymes      |                                      | 0 IU                               |                                |
| Other Vitamins          |                                      |                                    |                                |
| Vitamin D               | 600 IU                               | Not ordered                        |                                |
| Amino Acid              | mg/day A                             | mino Acid                          | mg/day                         |
| Arginine                |                                      | lethionine                         | 0                              |
| Asparagine              | 0 P                                  | henylalanine                       | 0                              |
| Cysteine                | 0 S                                  | erine                              | 0                              |
| Glutamine               | 0 T                                  | aurine                             | 0                              |
| Glycine                 | 0 T                                  | hreonine                           | 0                              |
| Histidine               | 0 T                                  | ryptophan                          | 0                              |
| Isoleucine              | 0 T                                  | yrosine                            | 0                              |
| Leucine                 | 0 V                                  | aline                              | 0                              |
| Lysine                  | 0                                    |                                    |                                |

Recommendations for age and gender-specific supplementation are set by comparing levels of nutrient functional need to optimal levels as described in the peer-reviewed literature. They are provided as guidance for short-term support of nutritional deficiencies only.

The Suggested Supplemental Schedule is provided at the request of the ordering practitioner. Any application of it as a therapeutic intervention is to be determined by the ordering practitioner.


|     | Normal | Borderline | High Need |
|-----|--------|------------|-----------|
| Key |        |            |           |

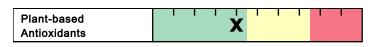



# NutrEval Interpretation At-A-Glance

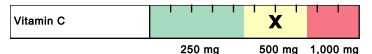
# Nutritional Needs

#### **Antioxidants**

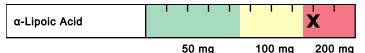



- Beta-carotene & other carotenoids are converted to vitamin A (retinol), involved in vision, antioxidant & immune function, gene expression & cell growth.
- Vitamin A deficiency may occur with chronic alcoholism, zinc deficiency, hypothyroidism, or oral contraceptives containing estrogen & progestin.
- Deficiency may result in night blindness, impaired immunity, healing & tissue regeneration, increased risk of infection, leukoplakia or keratosis.
- Food sources include cod liver oil, fortified cereals & milk, eggs, sweet potato, pumpkin, carrot, cantaloupe, mango, spinach, broccoli, kale & butternut squash.




- Alpha-tocopherol (body's main form of vitamin E) functions as an antioxidant, regulates cell signaling, influences immune function and inhibits coagulation.
- Deficiency may occur with malabsorption, cholestyramine, colestipol, isoniazid, orlistat, olestra and certain anti-convulsants (e.g., phenobarbital, phenytoin).
- Deficiency may result in peripheral neuropathy, ataxia, muscle weakness, retinopathy, and increased risk of CVD, prostate cancer and cataracts.
- Food sources include oils (olive, soy, corn, canola, safflower, sunflower), eggs, nuts, seeds, spinach, carrots, avocado, dark leafy greens and wheat germ.




- CoQ10 is a powerful antioxidant that is synthesized in the body and contained in cell membranes. CoQ10 is also essential for energy production & pH
- CoQ10 deficiency may occur with HMG-CoA reductase inhibitors (statins), several anti-diabetic medication classes (biguanides, sulfonylureas) or beta-
- Low levels may aggravate oxidative stress, diabetes, cancer, congestive heart failure, cardiac arrhythmias, gingivitis and neurologic diseases.
- Main food sources include meat, poultry, fish, soybean, canola oil, nuts and whole grains. Moderate sources include fruits, vegetables, eggs and dairy.



- Oxidative stress is the imbalance between the production of free radicals and the body's ability to readily detoxify these reactive species and/or repair the resulting damage with anti-oxidants.
- Oxidative stress can be endogenous (energy production and inflammation) or exogenous (exercise, exposure to environmental toxins)
- Oxidative stress has been implicated clinically in the development of neurodegenerative diseases, cardiovascular diseases and chronic fatigue
- Antioxidants may be found in whole food sources (e.g., brightly colored fruits & vegetables, green tea, turmeric) as well as nutraceuticals (e.g., resveratrol, EGCG, lutein, lycopene, ginkgo, milk thistle, etc.).



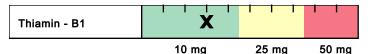
- Vitamin C is an antioxidant (also used in the regeneration of other antioxidants). It is involved in cholesterol metabolism, the production & function of WBCs and antibodies, and the synthesis of collagen, norepinephrine and carnitine.
- Deficiency may occur with oral contraceptives, aspirin, diuretics or NSAIDs.
- Deficiency can result in scurvy, swollen gingiva, periodontal destruction, loose teeth, sore mouth, soft tissue ulcerations, or increased risk of infection
- Food sources include oranges, grapefruit, strawberries, tomato, sweet red pepper, broccoli and potato.



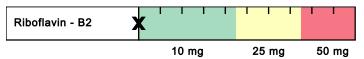
- α-Lipoic acid plays an important role in energy production, antioxidant activity (including the regeneration of vitamin C and glutathione), insulin signaling, cell signaling and the catabolism of α-keto acids and amino acids
- High biotin intake can compete with lipoic acid for cell membrane entry.
- Optimal levels of  $\alpha$ -lipoic acid may improve glucose utilization and protect against diabetic neuropathy, vascular disease and age-related cognitive decline.
- Main food sources include organ meats, spinach and broccoli. Lesser sources include tomato, peas, Brussels sprouts and brewer's yeast.



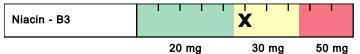
- Glutathione (GSH) is composed of cysteine, glutamine & glycine. GSH is a source of sulfate and plays a key role in antioxidant activity and detoxification
- GSH requirement is increased with high-fat diets, cigarette smoke, cystinuria. chronic alcoholism, chronic acetaminophen use, infection, inflammation and
- Deficiency may result in oxidative stress & damage, impaired detoxification, altered immunity, macular degeneration and increased risk of chronic illness.
- Food sources of GSH precursors include meats, poultry, fish, soy, corn, nuts, seeds, wheat germ, milk and cheese.


# Kev **Function** Causes of Deficiency Complications of Deficiency Food Sources

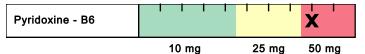



# NutrEval Interpretation At-A-Glance

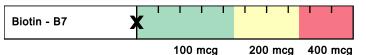
# Nutritional Needs


#### **B-Vitamins**

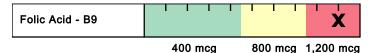



- B1 is a required cofactor for enzymes involved in energy production from food, and for the synthesis of ATP, GTP, DNA, RNA and NADPH.
- Low B1 can result from chronic alcoholism, diuretics, digoxin, oral contraceptives and HRT, or large amounts of tea & coffee (contain anti-B1 factors).
- B1 deficiency may lead to dry beriberi (e.g., neuropathy, muscle weakness), wet beriberi (e.g., cardiac problems, edema), encephalopathy or dementia.
- Food sources include lentils, whole grains, wheat germ, Brazil nuts, peas, organ meats, brewer's yeast, blackstrap molasses, spinach, milk & eggs.

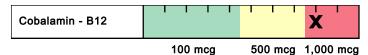



- B2 is a key component of enzymes involved in antioxidant function, energy production, detoxification, methionine metabolism and vitamin activation
- Low B2 may result from chronic alcoholism, some anti-psychotic medications, oral contraceptives, tricyclic antidepressants, quinacrine or adriamycin.
- B2 deficiency may result in oxidative stress, mitochondrial dysfunction, low uric acid, low B3 or B6, high homocysteine, anemia or oral & throat inflammation.
- Food sources include milk, cheese, eggs, whole grains, beef, chicken, wheat germ, fish, broccoli, asparagus, spinach, mushrooms and almonds.




- B3 is used to form NAD and NADP, involved in energy production from food, fatty acid & cholesterol synthesis, cell signaling, DNA repair & cell differentiation.
- Low B3 may result from deficiencies of tryptophan (B3 precursor), B6, B2 or Fe (cofactors in B3 production), or from long-term isoniazid or oral contraceptive use.
- B3 deficiency may result in pellagra (dermatitis, diarrhea, dementia), neurologic symptoms (e.g., depression, memory loss), bright red tongue or fatigue.
- Food sources include poultry, beef, organ meats, fish, whole grains, peanuts, seeds, lentils, brewer's yeast and lima beans.




- B6 (as P5P) is a cofactor for enzymes involved in glycogenolysis & gluconeogenesis, and synthesis of neurotransmitters, heme, B3, RBCs and nucleic acids.
- Low B6 may result from chronic alcoholism, long-term diuretics, estrogens (oral contraceptives and HRT), anti-TB meds, penicillamine, L-DOPA or digoxin.
- B6 deficiency may result in neurologic symptoms (e.g., irritability, depression, seizures), oral inflammation, impaired immunity or increased homocysteine.
- Food sources include poultry, beef, beef liver, fish, whole grains, wheat germ, soybean, lentils, nuts & amp; seeds, potato, spinach and carrots.

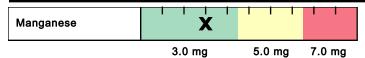


- Biotin is a cofactor for enzymes involved in functions such as fatty acid synthesis, mitochondrial FA oxidation, gluconeogenesis and DNA replication & transcription
- Deficiency may result from certain inborn errors, chronic intake of raw egg whites, long-term TPN, anticonvulsants, high-dose B5, sulfa drugs & other antibiotics.
- Low levels may result in neurologic symptoms (e.g., paresthesias, depression), hair loss, scaly rash on face or genitals or impaired immunity.
- Food sources include yeast, whole grains, wheat germ, eggs, cheese, liver, meats, fish, wheat, nuts & seeds, avocado, raspberries, sweet potato and cauliflower.

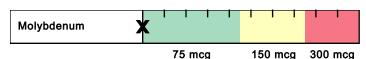


- Folic acid plays a key role in coenzymes involved in DNA and SAMe synthesis, methylation, nucleic acids & amino acid metabolism and RBC production.
- Low folate may result from alcoholism, high-dose NSAIDs, diabetic meds, H2 blockers, some diuretics and anti-convulsants, SSRIs, methotrexate, trimethoprim, pyrimethamine, triamterene, sulfasalazine or cholestyramine.
- Folate deficiency can result in anemia, fatigue, low methionine, increased homocysteine, impaired immunity, heart disease, birth defects and CA risk.
- Food sources include fortified grains, green vegetables, beans & legumes.



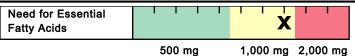

- B12 plays important roles in energy production from fats & proteins, methylation, synthesis of hemoglobin & RBCs, and maintenance of nerve cells, DNA & RNA.
- Low B12 may result from alcoholism, malabsorption, hypochlorhydria (e.g., from atrophic gastritis, H. pylori infection, pernicious anemia, H2 blockers, PPIs), vegan diets, diabetic meds, cholestyramine, chloramphenicol, neomycin or colchicine.
- B12 deficiency can lead to anemia, fatigue, neurologic symptoms (e.g., paresthesias, memory loss, depression, dementia), methylation defects or chromosome breaks
- Food sources include shellfish, red meat poultry, fish, eggs, milk and cheese.




# Interpretation At-A-Glance

#### **Nutritional Needs**

#### **Minerals**




- Manganese plays an important role in antioxidant function, gluconeogenesis, the urea cycle, cartilage & bone formation, energy production and digestion.
- Impaired absorption of Mn may occur with excess intake of Fe, Ca, Cu, folic acid, or phosphorous compounds, or use of long-term TPN, Mg-containing antacids or laxatives.
- Deficiency may result in impaired bone/connective tissue growth, glucose & lipid dysregulation, infertility, oxidative stress, inflammation or hyperammonemia.
- Food sources include whole grains, legumes, dried fruits, nuts, dark green leafy vegetables, liver, kidney and tea.

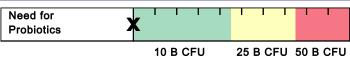


- Molybdenum is a cofactor for enzymes that convert sulfites to sulfate, and nucleotides to uric acid, and that help metabolize aldehydes & other toxins.
- Low Mo levels may result from long-term TPN that does not include Mo.
- Mo deficiency may result in increased sulfite, decreased plasma uric acid (and antioxidant function), deficient sulfate, impaired sulfation (detoxification), neurologic disorders or brain damage (if severe deficiency).
- Food sources include buckwheat, beans, grains, nuts, beans, lentils, meats and vegetables (although Mo content of plants depends on soil content).

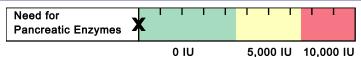

#### **Essential Fatty Acids**



- Omega-3 (O3) and Omega-6 (O6) fatty acids are polyunsaturated fatty acids that cannot be synthesized by the human body. They are classified as essential nutrients and must be obtained from dietary sources.
- The standard American diet is much higher in O6 than O3 fatty acids. Deficiency of EFAs may result from poor dietary intake and/or poor conversion from food sources.
- EFA deficiency is associated with decreased growth & development of infants and children, dry skin/rash, poor wound healing, and increased risk of infection, cardiovascular and inflammatory diseases.
- Dietary sources of the O6 Linoleic Acid (LA) include vegetable oils, nuts, seeds and some vegetables. Dietary sources of the O3 a-Linolenic Acid (ALA) include flaxseeds, walnuts, and their oils. Fish (mackerel, salmon, sardines) are the major dietary sources of the O3 fatty acids EPA and DHA.


# Magnesium 400 mg 600 mg 800 mg

- Magnesium is involved in >300 metabolic reactions. Key areas include energy production, bone & ATP formation, muscle & nerve conduction and cell signaling.
- Deficiency may occur with malabsorption, alcoholism, hyperparathyroidism, renal disorders (wasting), diabetes, diuretics, digoxin or high doses of zinc.
- Low Mg may result in muscle weakness/spasm, constipation, depression, hypertension, arrhythmias, hypocalcemia, hypokalemia or personality changes.
- Food sources include dark leafy greens, oatmeal, buckwheat, unpolished grains, chocolate, milk, nuts & seeds, lima beans and molasses.

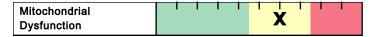



- Zinc plays a vital role in immunity, protein metabolism, heme synthesis, growth & development, reproduction, digestion and antioxidant function.
- Low levels may occur with malabsorption, alcoholism, chronic diarrhea, diabetes, excess Cu or Fe, diuretics, ACE inhibitors, H2 blockers or digoxin.
- Deficiency can result in hair loss and skin rashes, also impairments in growth & healing, immunity, sexual function, taste & smell and digestion.
- Food sources include oysters, organ meats, soybean, wheat germ, seeds, nuts, red meat, chicken, herring, milk, yeast, leafy and root vegetables.

# **Digestive Support**



- Probiotics have many functions. These include: production of some B vitamins and vitamin K; enhance digestion & absorption; decrease severity of diarrheal illness; modulate of immune function & intestinal permeability.
- Alterations of gastrointestinal microflora may result from C-section delivery, antibiotic use, improved sanitation, decreased consumption of fermented foods and use of certain drugs.
- Some of the diseases associated with microflora imbalances include: IBS, IBD, fibromyalgia, chronic fatigue syndrome, obesity, atopic illness, colic and cancer.
- Food sources rich in probiotics are yogurt, kefir and fermented foods.



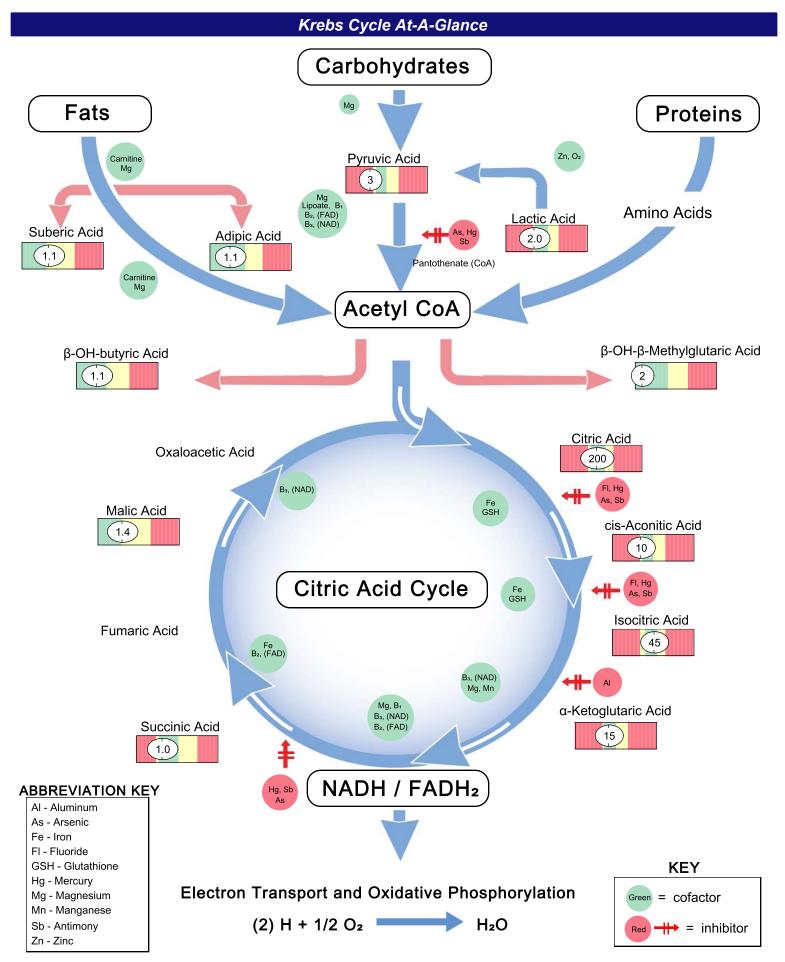

- Pancreatic enzymes are secreted by the exocrine glands of the pancreas and include protease/peptidase, lipase and amylase.
- Pancreatic exocrine insufficiency may be primary or secondary in nature. Any indication of insufficiency warrants further evaluation for underlying cause (i.e., celiac disease, small intestine villous atrophy, small bowel bacterial overgrowth).
- A high functional need for digestive enzymes suggests that there is an impairment related to digestive capacity.
- Determining the strength of the pancreatic enzyme support depends on the degree of functional impairment. Supplement potency is based on the lipase units present in both prescriptive and non-prescriptive agents.



# Interpretation At-A-Glance

#### Functional Imbalances




- Mitochondria are a primary site of generation of reactive oxygen species.
   Oxidative damage is considered an important factor in decline of physiologic function that occurs with aging and stress.
- Mitochondrial defects have been identified in cardiovascular disease, fatigue syndromes, neurologic disorders such as Parkinson's and Alzheimer's disease, as well as a variety of genetic conditions. Common nutritional deficiencies can impair mitochondrial efficiency.



- Methyl tert-Butyl Ether (MTBE) is a common gasoline additive used to increase
  octane ratings, and has been found to contaminate ground water supplies where
  gasoline is stored. Inhalation of MTBE may cause nose and throat irritation, as
  well as headaches, nausea, dizziness and mental confusion. Animal studies
  suggest that drinking MTBE may cause gastrointestinal irritation, liver and kidney
  damage and nervous system effects.
- Styrene is classified by the US EPA as a "potential human carcinogen," and is found widely distributed in commercial products such as rubber, plastic, insulation, fiberglass, pipes, food containers and carpet backing.
- Levels of these toxic substances should be examined within the context of the body's functional capacity for methylation and need for glutathione.



- Methylation is an enzymatic process that is critical for both synthesis and inactivation. DNA, estrogen and neurotransmitter metabolism are all dependent on appropriate methylation activity.
- B vitamins and other nutrients (methionine, magnesium, selenium) functionally support catechol-O-methyltransferase (COMT), the enzyme responsible for methylation.



Page 8 ID: Patient:

# All biomarkers reported in mmol/mol creatinine unless otherwise noted. $Metabolic\ Analysis\ Markers\ (Urine)$

| Malabsorption and Dysbiosis Markers   |      |      |             |
|---------------------------------------|------|------|-------------|
| Malabsorption Mark                    | ers  | Refe | rence Range |
| Indoleacetic Acid (IAA)               | 1.1  |      | <= 4.2      |
| Phenylacetic Acid (PAA)               | 0.06 |      | <= 0.12     |
| Bacterial Dysbiosis Markers           |      |      |             |
| Dihydroxyphenylpropionic Acid (DHPPA) | 2.5  |      | <= 5.3      |
| 3-Hydroxyphenylacetic Acid            | 5.0  |      | <= 8.1      |
| 4-Hydroxyphenylacetic Acid            | 10   |      | <= 29       |
| Benzoic Acid                          | 0.02 |      | <= 0.05     |
| Hippuric Acid                         | 360  |      | <= 603      |

| Y | east / | / Funga | al Dys | biosis | Markeı | ^S |
|---|--------|---------|--------|--------|--------|----|
|   |        |         |        |        |        |    |

| Arabinose       | 35  | <= 96  |
|-----------------|-----|--------|
| Citramalic Acid | 3.1 | <= 5.8 |
| Tartaric Acid   | dl  | <= 15  |

# Cellular Energy & Mitochondrial Metabolites

| Carbohydrate Metabolism  |     | Refe | erence Range |
|--------------------------|-----|------|--------------|
| Lactic Acid              | 2.0 |      | 1.9-19.8     |
| Pyruvic Acid             | 3   |      | 7-32         |
| β-OH-Butyric Acid (BHBA) | 1.1 |      | <= 2.8       |

#### **Energy Metabolism**

| Citric Acid                      | 200 | 40-520  |
|----------------------------------|-----|---------|
| Cis-Aconitic Acid                | 10  | 10-36   |
| Isocitric Acid                   | 45  | 22-65   |
| α-Ketoglutaric Acid (AKG)        | 15  | 4-52    |
| Succinic Acid                    | 1.0 | 0.4-4.6 |
| Malic Acid                       | 1.4 | <= 3.0  |
| β-OH-β-Methylglutaric Acid (HMG) | 2   | <= 15   |

#### **Fatty Acid Metabolism**

| i atty / tola iniotabolio | /••• |        |
|---------------------------|------|--------|
| Adipic Acid               | 1.1  | <= 2.8 |
| Suberic Acid              | 1.1  | <= 2.1 |

# **Creatinine Concentration**

|              |     | Reference Range |
|--------------|-----|-----------------|
| Creatinine + | 8.0 | 3.1-19.5 mmol/L |

Methodology: GCMS, LC/MS/MS, Alkaline Picrate

| Neurotransmitter Metabolites |      |    |            |
|------------------------------|------|----|------------|
| Reference Range              |      |    |            |
| Vanilmandelic Acid           | 1.5  |    | 0.4-3.6    |
| Homovanillic Acid            | 2.6  |    | 1.2-5.3    |
| 5-OH-indoleacetic Acid       | 9.9  |    | 3.8-12.1   |
| 3-Methyl-4-OH-phenylglycol   | 0.07 |    | 0.02-0.22  |
| Kynurenic Acid               | 6.6  |    | <= 7.1     |
| Quinolinic Acid              | 1.8  |    | <= 9.1     |
| Kynurenic / Quinolinic Ratio |      | 3. | 67 >= 0.44 |

# Vitamin Markers

|                   | Re  | eference Range |
|-------------------|-----|----------------|
| α-Ketoadipic Acid | 0.6 | <= 1.7         |
|                   |     |                |

| α-Ketoisovaleric Acid          | 0.23 | <= 0.97 |
|--------------------------------|------|---------|
| α-Ketoisocaproic Acid          | 0.18 | <= 0.89 |
| α-Keto-β-Methylvaleric Acid    | 0.7  | <= 2.1  |
| Formiminoglutamic Acid (FIGlu) | 1.6  | <= 1.5  |
| Glutaric Acid                  | 0.25 | <= 0.51 |
| Isovalerylglycine              | 3.5  | <= 3.7  |
| Methylmalonic Acid             | 0.8  | <= 1.9  |
| Xanthurenic Acid               | 0.83 | <= 0.96 |
| 3-Hydroxypropionic Acid        | 7    | 5-22    |
| 3-Hydroxyisovaleric Acid       | (3)  | <= 29   |

# **Toxin & Detoxification Markers**

|                                         |      | Refe | rence Range |
|-----------------------------------------|------|------|-------------|
| α-Ketophenylacetic Acid (from Styrene)  | 0.19 |      | <= 0.46     |
| α-Hydroxyisobutyric Acid<br>(from MTBE) | 3.9  |      | <= 6.7      |
| Orotic Acid                             | 0.62 |      | 0.33-1.01   |
| Pyroglutamic Acid                       | 29   |      | 16-34       |

# Tyrosine Metabolism

|                            | Refe | erence Range |
|----------------------------|------|--------------|
| Homogentisic Acid          | 9    | <= 19        |
| 2-Hydroxyphenylacetic Acid | 0.64 | <= 0.76      |

Metabolic Analysis Reference Ranges are Age Specific

The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Unless otherwise noted with ◆, the assay has not been cleared by the U.S. Food and Drug Administration.

# Amino Acids (Plasma)

All biomarkers reported in micromoles per deciliter unless stated otherwise.

| Nutritionally Essential Amino Acids |       |                 |  |  |
|-------------------------------------|-------|-----------------|--|--|
| Amino Acid                          | F     | Reference Range |  |  |
| Arginine                            | 7.5   | 6.0-17.5        |  |  |
| Histidine                           | 9.1   | 6.5-13.3        |  |  |
| Isoleucine                          | 9.43  | 5.79-18.69      |  |  |
| Leucine                             | 18.8  | 12.1-36.1       |  |  |
| Lysine                              | 23.3  | 13.7-34.7       |  |  |
| Methionine                          | 4.5   | 2.3-6.5         |  |  |
| Phenylalanine                       | 9.39  | 6.07-17.46      |  |  |
| Taurine                             | 5.85  | 4.41-10.99      |  |  |
| Threonine                           | 15.22 | 6.42-16.32      |  |  |
| Tryptophan                          | 5.66  | 2.65-6.67       |  |  |
| Valine                              | 32.9  | 18.3-42.6       |  |  |

| Nonessential Protein Amino Acids |     |      |             |
|----------------------------------|-----|------|-------------|
| Amino Acid                       |     | Refe | rence Range |
| Alanine                          | 28  |      | 23-62       |
| Asparagine                       | 8.3 |      | 3.5-11.6    |
| Aspartic Acid                    | d   |      | <= 0.67     |
| Cyst(e)ine                       | 9.3 |      | 5.9-19.9    |
| γ-Aminobutyric Acid              | dl  |      | <= 0.06     |
| Glutamic Acid                    | 3.1 |      | 2.0-14.5    |
| Glutamine                        | 64  |      | 44-111      |
| Proline                          | 32  |      | 15-57       |
| Tyrosine                         | 9.8 |      | 6.2-18.5    |

| <u> 3 Vitamin Marke</u>   | ers                                                    |         | Refer | ence Rang |
|---------------------------|--------------------------------------------------------|---------|-------|-----------|
| α-Aminoadipic Acid        | 0.06                                                   |         |       | <= 0.28   |
| α-Amino-N-butyric<br>Acid |                                                        | 5.40    |       | 1.76-9.99 |
| β-Aminoisobutyric<br>Acid | 0.40                                                   | )       |       | <= 0.72   |
| Cystathionine             |                                                        | (0      | 0.27  | <= 0.09   |
| 3-Methylhistidine         | 0.25                                                   |         |       | <= 0.78   |
| Jrea Cycle Mar            | kers                                                   |         |       |           |
| Citrulline                |                                                        | 4.2     |       | 1.6-5.7   |
| Ornithine                 |                                                        | 9.41    |       | 4.38-15.4 |
| Urea                      |                                                        | 535     |       | 216-1,156 |
| 3lycine/Serine            | Metabo                                                 | olites  |       |           |
| Glycine                   |                                                        | 12      |       | 5-23      |
| Serine                    |                                                        | 5.5     |       | 2.1-7.0   |
| Ethanolamine              |                                                        | 0.55    |       | 0.19-0.78 |
| Phosphoethanolamine       | 0                                                      | .19     |       | 0.15-0.64 |
| Phosphoserine             | <dl< td=""><td></td><td></td><td>&lt;= 0.39</td></dl<> |         |       | <= 0.39   |
| Sarcosine                 | 0.10                                                   |         |       | <= 0.15   |
| Dietary                   | Peptide                                                | Related | Mark  | ers       |

|                   |      | Reference Range |
|-------------------|------|-----------------|
| 1-Methylhistidine | 0.19 | <= 1.64         |
| β-Alanine         | 0.3  | <= 0.7          |

Methodology: LC/MS/MS

Amino Acid Reference Ranges are age specific.

The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Assays have not been cleared by the U.S. Food and Drug Administration.

# Essential and Metabolic Fatty Acids Markers (RBCs)

| Omega 3 Fatty Acids               |                           |                 |  |
|-----------------------------------|---------------------------|-----------------|--|
| Analyte (cold                     | water fish, flax, walnut) | Reference Range |  |
| α-Linolenic<br>(ALA) 18:3 n3      | 0.15                      | >= 0.09 wt %    |  |
| Eicosapentaenoic<br>(EPA) 20:5 n3 | 0.38                      | >= 0.16 wt %    |  |
| Docosapentaenoic<br>(DPA) 22:5 n3 | 1.69                      | >= 1.14 wt %    |  |
| Docosahexaenoic<br>(DHA) 22:6 n3  | 2.7                       | >= 2.1 wt %     |  |
| % Omega 3s                        | 4.9                       | >= 3.8          |  |

| Omega 9 Fatty Acids |             |                 |  |
|---------------------|-------------|-----------------|--|
| Analyte             | (olive oil) | Reference Range |  |
| Oleic<br>18:1 n9    | 13          | 10-13 wt %      |  |
| Nervonic<br>24:1 n9 | 2.8         | 2.1-3.5 wt %    |  |
| % Omega 9s          | 15.8        | 13.3-16.6       |  |

| Saturated Fatty Acids  |          |                     |           |            |
|------------------------|----------|---------------------|-----------|------------|
| Analyte (meat,         | dairy, c | oconuts, palm oils) | Reference | e Range    |
| Palmitic<br>C16:0      |          | 20                  | 18-2      | 3 wt %     |
| Stearic<br>c18:0       |          | 18                  | 14-1      | 7 wt %     |
| Arachidic<br>c20:0     |          | 0.32                | 0.22      | -0.35 wt % |
| Behenic<br>C22:0       | 0.       | 86                  | 0.92      | -1.68 wt % |
| Tricosanoic<br>c23:0   |          | 0.18                | 0.12      | -0.18 wt % |
| Lignoceric<br>C24:0    | 1.       | 8                   | 2.1-      | 3.8 wt %   |
| Pentadecanoic<br>c15:0 |          | 0.13                | 0.07      | -0.15 wt % |
| Margaric<br>c17:0      |          | 0.33                | 0.22      | -0.37 wt % |
| % Saturated Fats       |          | 41.3                | 39.8      | -43.6      |

Methodology: GCMS

| Omega 6 Fatty Acids                  |                        |                 |  |
|--------------------------------------|------------------------|-----------------|--|
| Analyte (vegetable oil, grai         | ns, most meats, dairy) | Reference Range |  |
| Linoleic<br>(LA) 18:2 n6             | 14.9                   | 10.5-16.9 wt %  |  |
| γ-Linolenic<br>(GLA) 18:3 n6         | 0.11                   | 0.03-0.13 wt %  |  |
| Dihomo-γ-linolenic<br>(DGLA) 20:3 n6 | 0.82                   | >= 1.19 wt %    |  |
| Arachidonic<br>(AA) 20:4 n6          | 18                     | 15-21 wt %      |  |
| Docosatetraenoic<br>(DTA) 22:4 n6    | 2.07                   | 1.50-4.20 wt %  |  |
| Eicosadienoic<br>20:2 n6             | 0.24                   | <= 0.26 wt %    |  |
| % Omega 6s                           | 36.4                   | 30.5-39.7       |  |

| Monounsaturated Fats         |      |  |              |  |
|------------------------------|------|--|--------------|--|
| Omega 7 Fats Reference Range |      |  |              |  |
| Palmitoleic                  | 0.29 |  | <= 0.64 wt % |  |
| Vaccenic<br>18:1 n7          | 1.02 |  | <= 1.13 wt % |  |
| Trans Fat                    |      |  |              |  |
| Elaidic<br>18:1 n9t          | 0.34 |  | <= 0.59 wt % |  |

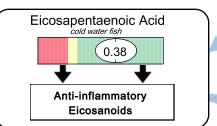
| Delta - 6 Desaturase Activity        |  |               |  |  |
|--------------------------------------|--|---------------|--|--|
| Upregulated Functional Impaired      |  |               |  |  |
| Linoleic / DGLA<br>18:2 n6 / 20:3 n6 |  | 18.1 6.0-12.3 |  |  |

| Cardiovascular Risk           |  |     |  |          |  |
|-------------------------------|--|-----|--|----------|--|
| Analyte Reference Rango       |  |     |  |          |  |
| Omega 6s / Omega 3s           |  | 7.4 |  | 3.4-10.7 |  |
| AA / EPA<br>20:4 n6 / 20:5 n3 |  | 48  |  | 12-125   |  |
| Omega 3 Index                 |  | 3.1 |  | >= 4.0   |  |

The Essential Fatty Acid reference ranges are based on an adult population.

Patient: ID: Page 11

## **Essential Fatty Acid Metabolism**


# Omega 3 Family

α-Linolenic Acid
flax, walnut, grasses

0.15

Stearidonic acid

Eicosatetraenoic acid, ETA



Docosapentaenoic Acid

Docosahexaenoic Acid

Delta-6 Desaturase
Vitamin and Mineral Cofactors:

FAD (B2), Niacin (B3) Pyridoxal-5-phosphate (B6) Vitamin C, Insulin, Zn, Mg

#### Elongase

Vitamin and Mineral Cofactors:

Niacin (B3) Pyridoxal-5-phosphate (B6) Pantothenic Acid (B5) Biotin, Vitamin C

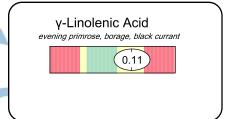
# Delta-5 Desaturase Vitamin and Mineral Cofactors:

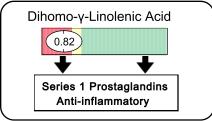
FAD (B2), Niacin (B3) Pyridoxal-5-phosphate (B6) Vitamin C, Insulin, Zn, Mg

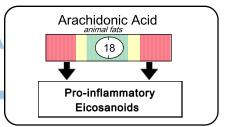
# Elongase

Vitamin and Mineral Cofactors:

Niacin (B3) Pyridoxal-5-phosphate (B6), Biotin Pantothenic Acid (B5), Vitamin C


## Elongase Delta-6 Desaturase


Vitamin and Mineral Cofactors:


FAD (B2), Niacin (B3) Pyridoxal-5-phosphate (B6), Biotin Vitamin C, Zn, Mg, Carnitine Pantothenic Acid (B5)

# Omega 6 Family









Docosatetraenoic Acid

This test was developed and its performance characteristics determined by Genova Diagnostics, Inc. It has not been cleared by the U.S. Food and Drug Administration.

# Oxidative Stress Markers

# **Oxidative Stress Markers**

#### Reference Range

Methodology: Colorimetric, thiobarbituric acid reactive substances (TBARS), Alkaline Picrate, Hexokinase/G-6-PDH, LC/MS/MS, HPLC

| Glutathione (whole blood)           | 876  | >=669<br>micromol/L         |
|-------------------------------------|------|-----------------------------|
| Lipid Peroxides (urine)             | 7.0  | <=10.0<br>micromol/g Creat. |
| 8-OHdG (urine)                      | 6    | <=15<br>mcg/g Creat.        |
| Coenzyme Q10,<br>Ubiquinone (serum) | 0.99 | 0.43-1.49<br>mcg/mL         |

The Oxidative Stress reference ranges are based on an adult population.

The performance characteristics of the Oxidative Stress Markers have been verified by Genova Diagnostics, Inc. Unless otherwise noted with ◆ they have not been cleared by the U.S. Food and Drug Administration.

# Elemental Markers

| Nutrient Elements       |                 |                   |  |  |  |
|-------------------------|-----------------|-------------------|--|--|--|
| Element                 | Reference Range | Reference Range   |  |  |  |
| Copper (plasma)         | 99.2            | 75.3-192.0 mcg/dL |  |  |  |
| Magnesium (RBC)         | 45.9            | 30.1-56.5 mcg/g   |  |  |  |
| Manganese (whole blood) | 9.8             | 3.0-16.5 mcg/L    |  |  |  |
| Potassium (RBC)         | 2,877           | 2,220-3,626 mcg/g |  |  |  |
| Selenium (whole blood)  | 175             | 109-330 mcg/L     |  |  |  |
| Zinc (plasma)           | 83.7            | 64.3-159.4 mcg/dL |  |  |  |

| Toxic Elements* |                                                     |       |                 |  |  |  |
|-----------------|-----------------------------------------------------|-------|-----------------|--|--|--|
| Element         | Reference                                           | Range | Reference Range |  |  |  |
| Lead            | 1.20                                                |       | <= 2.81 mcg/dL  |  |  |  |
| Mercury         | 0.58                                                |       | <= 4.35 mcg/L   |  |  |  |
| Arsenic         | ⟨OL                                                 |       | <= 13.7 mcg/L   |  |  |  |
| Cadmium         | 0.18                                                |       | <= 1.22 mcg/L   |  |  |  |
| Tin             | <dl< td=""><td></td><td>&lt;= 0.39 mcg/L</td></dl<> |       | <= 0.39 mcg/L   |  |  |  |

<sup>\*</sup> All toxic Elements are measured in whole blood. Methodology: ICP-MS

The Elemental reference ranges are based on an adult population.

The performance characteristics of the Elemental Markers have been verified by Genova Diagnostics, Inc. They have not been cleared by the U.S. Food and Drug Administration.

Elemental testing performed by Genova Diagnostics, Inc. 3425 Corporate Way, Duluth, GA 30096 - Robert M. David, PhD, Lab Director - CLIA Lic. #11D0255349 - Medicare Lic. #34-8475

#### CHECKLIST (PRIOR TO SHIPPING)

☐ All the tubes are tightly closed

☐ Patient's Date of Birth written on all tube labels

#### **CLINICIAN BLOOD DRAW INSTRUCTIONS**

of the Test Requisition

NUTREVAL PLASMA SPECIMEN COLLECTION INSTRUCTIONS

# NutrEvah

The following test(s) can be collected using these instructions:

| 3                                            |       |
|----------------------------------------------|-------|
| NutrEval® Plasma*                            | #3001 |
| Add-ons available                            |       |
| <ul> <li>Vitamin D</li> </ul>                | #3532 |
| <ul> <li>Genomics a-la-carte SNPs</li> </ul> |       |
| → ApoE                                       | #5112 |
| > MTHFR                                      | #5111 |
| > COMT                                       | #5102 |
| > TNF-α                                      | #5106 |
|                                              |       |

\* Not available in New York

#### Test may not be processed without this information. KIT LABEL SHEET **TEST REQUISITION FORM** Write on each label Please fill out: ☐ Patient's Date of Birth ☐ Patient's First/Last name ☐ Date of Birth Attach and label: ☐ Gender □ ALL TUBES □ Date of Collection ☐ Front upper right hand corner

#### 2. Blood Tubes - Frozen

1. All Tubes

- ☐ Amber transfer tube
- ☐ Yellow transfer tube

#### 3. Blood Tubes - Refrigerated

- ☐ Na EDTA or K2-EDTA blue-top tube
- ☐ EDTA lavender-top tube

#### 4. Urine Tubes - Frozen

- ☐ Green-top tube
- ☐ Blue-top Amber transfer tube

#### 5. Swabs (ONLY FOR GENOMICS ADD-ONS)

☐ Swabs in the package and in the envelope

#### 6. Test Requisition Form with Payment

- ☐ Test Requisition Form is complete **Test is marked**, **Patient's first and last name**, date of birth, gender, and date of collection are recorded
- ☐ Payment is included or pay online at www.gdx.net/prc

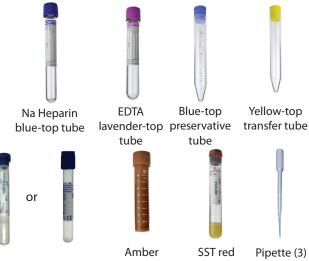
#### SHIP THE SPECIMEN(S) TO THE LAB

Specimen(s) must be returned in the Genova Diagnostics kit box.

Please refer to the shipping instruction insert found in your kit box.



Call 800.522.4762 or visit our website at www.gdx.net


#### Specimen

Blood, Plasma, Serum

#### **Additional Materials**

- Foam Insulator Box
- Freezer Brick
- · Biohazard Bag with **Absorbent Material**
- · Rubber Band
- · Test Requisition Form
- · Collection Labels
- · Prepaid Mailing Envelope
- · Bubblewrap Bag

# **Collection Materials for Blood**



Na-EDTA K2-EDTA transfer tube tiger-top tube blue-top tube blue-top tube

The Na-EDTA blue-top tube is interchangeable with the K2-EDTA blue-top tube for this specimen collection pack. Please Note: These are trace mineral tubes, not standard tubes.

#### **IMPORTANT PREP BEFORE SAMPLE COLLECTIONS**

- ☐ Schedule the patient accordingly
- ☐ Abnormal kidney function or use of diuretics may influence test results
- ☐ Female patients should not collect urine during a menstrual period

#### **MEDICATIONS MAY IMPACT RESULTS**



Discontinuation is at the discretion of the physician if medically appropriate Antibiotics, antifungals, amphetamines, acid blockers, fibrate and corticosteroids may impact results

#### **4 DAYS BEFORE THE TEST:**



- ☐ If medically appropriate, non-essential medications, supplements, and nutrient fortified foods/beverages should be discontinued
- ☐ Avoid artificial sweeteners and MSG

#### 24 HOURS BEFORE THE TEST:



- ☐ Patient should eat their usual diet Avoid over-consuming any single food or extreme diets
- ☐ Fluid intake should be limited to eight 8-ounce glasses of fluid
- ☐ Patient should avoid seafood

#### **NIGHT BEFORE THE TEST:**



- ☐ Patients must fast overnight prior to the blood draw
- ☐ Freeze the enclosed freezer brick a minimum of 8 hours before shipping

#### THE DAY OF THE TEST:



☐ All patient's urine tubes must be completely frozen prior to blood draw appointment

For more details, please visit www.gdx.net/tests/prep

# **BLOOD COLLECTION**

Please collect all tubes in one session. Label each tube with the patient's date of birth.

Blood processing note: Step 3 must be completed within 45 minutes after blood collection.

- Before venipuncture, thoroughly wash the skin area with isopropyl alcohol, using two successive swabs of clean, sterile cotton. **Do not use iodine or mercury-based disinfectants/antiseptics.** Extra cleaning of the skin is important for accurate trace element analysis. **Use only stainless steel needles, with no aluminum or other metal** crimp ring.
- 2 DRAW BLOOD
- 3 BLOOD PROCESSING



#### **NA-EDTA or K2-EDTA BLUE-TOP TUBE**

**Gently invert** the tube 10-15 times **Refrigerate** no more than 4 days prior to shipping

**RETURN TO LAB** 



#### NA HEPARIN BLUE-TOP TUBE

Gently invert the tube 10-15 times
Centrifuge 15 min. at 3000 RPM
Transfer plasma to blue-top preservative tube

**DISCARD** 



Immediately shake very hard at least 10-20 sec.
Centrifuge for 5 min. at 2500 RPM
Transfer the clear supernatant

into the yellow-top transfer tube

DISCARD

YELLOW-TOP
TRANSFER TUBE:
Freeze

**RETURN TO LAB** 



#### **RED SST TIGER-TOP TUBE**

**Clot** for 15 min. while standing in a rack **Centrifuge** 15 min. at 3000 RPM **Transfer** serum to amber transfer tube

**DISCARD** 



#### **AMBER TRANSFER TUBE**

**Freeze** 

**RETURN TO LAB** 



#### **EDTA LAVENDER TOP TUBE**

Gently invert 5 times Do Not Shake Refrigerate

**RETURN TO LAB** 

### **NUTREVAL PLASMA SPECIMEN COLLECTION INSTRUCTIONS**

#### PATIENT URINE AND SALIVA COLLECTION INSTRUCTIONS



The following test(s) can be collected using these instructions:

| NutrEval® Plasma* | #3001 |
|-------------------|-------|
|-------------------|-------|

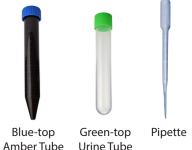
Add-ons available

| • | Vitami | n D |  | #3532 |
|---|--------|-----|--|-------|
|   |        |     |  |       |

Genomics a-la-carte SNPs

| > ApoE  | #5112 |
|---------|-------|
| > MTHFR | #5111 |
| > COMT  | #5102 |
| > TNF-α | #5106 |

<sup>\*</sup> Not available in New York




#### Specimen

Urine (per instructions), frozen

Saliva (only for Genomics add-ons)

# **Collection Materials for Urine**



**Collection Materials for Saliva** 







Envelope

# Call 800.522.4762 or visit our website at www.gdx.net

#### **URINE COLLECTION**

#### 24 HOURS BEFORE THE TEST:

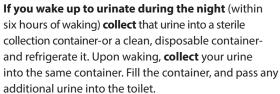


#### MORNING OF COLLECTION:



- ☐ Eat usual diet, but avoid over-consuming any single food or extreme diet
- ☐ Fluid intakes should be limited to eight 8-ounce glasses of fluid over a 24 hour period

#### **NIGHT BEFORE THE TEST:**




☐ You must fast overnight prior to your blood draw

- Avoid contact with the skin and eyes. For eye contact, flush with water thoroughly for 15 minutes. For skin contact, wash thoroughly with soap and water. If ingested, contact poison control center immediately.
- ☐ **Collect** and return specimen to your clinician on morning of blood draw
- ☐ **Females** should not collect urine during a menstrual period

IMPORTANT: To ensure accurate test results you <u>MUST</u> provide the requested information.

- 1 Label all tubes with the patient's date of birth. Do not discard tube fluid.
- Write patient's first and last name, date of birth, gender and date of collection on the Test Requisition Form.
- Consider collecting urine 24 hours prior to blood collection to allow enough time for urine to freeze completely.



- **Use** the pipette to transfer urine from the collection container into the Blue-top Amber Tube and Green-top Urine Tube until both are nearly full.
- **5 Recap** the tubes tightly and **shake**.
- Place the tubes into the biohazard bag labeled BAG ONE and freeze for a minimum of 2 hours.

  Bring frozen urine to the blood draw. Some thawing in transit is expected.









#### SALIVA COLLECTION (ONLY FOR GENOMICS ADD-ON TESTING)

#### NIGHT BEFORE COLLECTION:



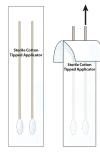
#### MORNING OF COLLECTION:



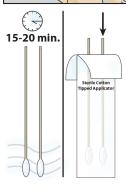
- ☐ **Use** your normal nightly routine of brushing and flossing of teeth, but do not use mouthwash
- Specimen must be collected immediately upon rising. Do not practice normal oral hygiene routine, do not eat or drink anything other than water.
- ☐ Just prior to collection, **wash** hands completely with hand soap

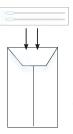
#### For full details refer to: www.gdx.net/tests/prep

- Keeping the packet intact, peel open the package labeled, "Sterile Cotton Tipped Applicator."


  Only peel back the package far enough to remove the cotton swab applicator.
- Remove one applicator.

  Avoid contact with the cotton tip.
- Open your mouth widely and insert applicator. For at least 30 seconds, aggressively scrape the inside of your cheek using a back and forth, and up and down motion. Rotate the applicator several times, and swab between the cheek and gums. Avoid excessive saliva.


**Note**: Follow these instructions carefully to ensure the swab collects a sufficient amount of cheek cells. If there is not enough DNA collected on the applicator, a recollection will be required.


#### **REPEAT FIGURES 2 - 3 WITH SECOND SWAB**

- **Allow** swabs to air dry for 15-20 minutes, then replace them (swab first) into the swab applicator package.
- **Print** Full name, collection date, and date of birth on specimen collection label. **Place** the specimen collection label on the envelope.
- 6 Insert swab applicator package into the letter envelope and seal. Deliver the envelope, along with the frozen bag containing urine sample, to your healthcare provider's office.









# **Pediatrics\* Minimums for NutrEval**



| Blood Draw Tube | Volume of<br>Blood Draw (mls) | Pediatric Minimum<br>Draw Amounts (mls) | Processing? | Transfer Tube?                       | Biomarkers          |
|-----------------|-------------------------------|-----------------------------------------|-------------|--------------------------------------|---------------------|
| Na EDTA         | 6                             | 3                                       | No          | NA                                   | Elemental           |
| SST             | 8.5                           | 3                                       | Yes         | Amber Transfer tube with Serum label | Vitamin D and CoQ10 |
| EDTA            | 4                             | 4                                       | No          | NA                                   | Glutathione and EMF |

Urine Tubes are the same as current (SSA tube for amino acids; Thymol tube for OA; Neutral tube for 80HdG)



| Blood Draw Tube | Volume of<br>Blood Draw (mls) | Pediatric Minimum<br>Draw Amounts (mls) | Processing? | Transfer Tube?      | Biomarkers           |
|-----------------|-------------------------------|-----------------------------------------|-------------|---------------------|----------------------|
| Na Heparin      | 6                             | 6                                       | Yes         | Yellow Top Tube     | Amino Acids (Plasma) |
| Na EDTA         | 6                             | 3                                       | No          | NA                  | Elemental            |
| SST             | 8.5                           | 3                                       | Yes         | Amber Transfer tube | Vitamin D and CoQ10  |
|                 |                               |                                         |             | with Serum label    |                      |
| EDTA            | 4                             | 4                                       | No          | NA                  | Glutathione and EMFA |

Urine Tubes are the same as current (Thymol tube for OA; Neutral tube for 80HdG)



<sup>\*</sup> NutrEval FMV and NutrEval Plasma testing is not available for those less than 2 years of age. Specimens for patients less than 2 years of age will be discarded