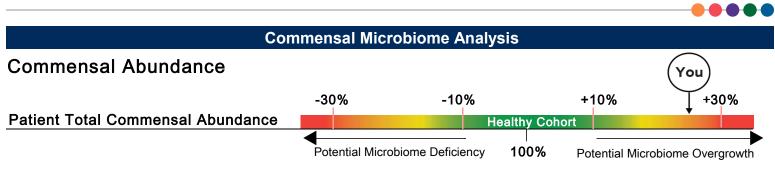
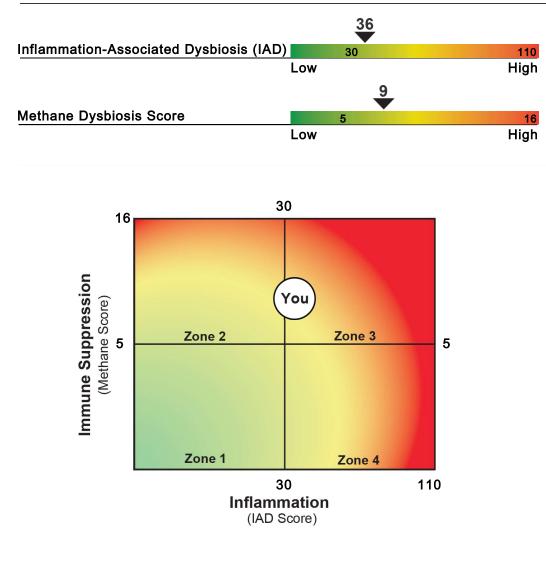


3425 Corporate Way Duluth, GA 30096


Patient: SAMPLE PATIENT DOB:

Sex: MRN:


© Genova Diagnostics · Robert M. David, PhD, Lab Director · CLIA Lic. #11D0255349 · Medicare Lic. #34-8475 · Georgia Lab Lic. Code #067-007 New York Clinical Lab PFI #4578 · Florida Clinical Lab Lic. #800008124

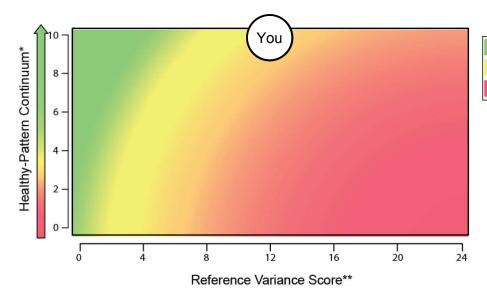
Total Commenal Balance: The total commensal abundance is a sum-total of the reported commensal bacteria compared to a healthy cohort. Low levels of commensal bacteria are often observed after antimicrobial therapy, or in diets lacking fiber and/or prebiotic-rich foods and may indicate the need for microbiome support. Conversely, higher total commensal abundance may indicate potential bacteria overgrowth or probiotic supplementation.

Dysbiosis Patterns

Dysbiosis Patterns: Genova's data analysis has led to the development of unique dysbiosis patterns, related to key physiologic disruptions, such as immunosuppresion and inflammation. These patterns may represent dysbiotic changes that could pose clinical significance. Please see Genova's published literature for more details: https://rdcu.be/bRhzv

Page 2

Zone 1: The commensal profile in this zone does not align with profiles associated with intestinal inflammation or immunosuppression. If inflammatory biomarkers are present, other causes need to be excluded, such as infection, food allergy, or more serious pathology.


Zone 2: This pattern of bacteria is associated with impaired intestinal barrier function (low fecal slgA and EPX). Patients in this zone have higher rates of opportunistic infections (e.g. *Blastocystis spp. & Dientamoeba fragilis*) as well as fecal fat malabsorption. Commensal abundance is higher in this group suggesting potential bacterial overgrowth.

Zone 3: Patients in this zone may have more inflammation compared to those in zone 4. However, commensal abundance is usually higher making use of antimicrobial therapy relatively safer. Patients in this zone may have higher rates of pathogenic infections.

Zone 4: This commensal profile is associated with increased intestinal inflammation. IBD patients are more likely to have this pattern of bacteria. Commensal abundance is lower in this zone; therefore, antibiotic use for GI potential pathogens should be used with caution. In addition to standard treatment for intestinal inflammation, modulation of the commensal gut profile is encouraged.

Commensal Microbiome Analysis

Commensal Balance

Balanced	Represents 95% of healthy individuals	
Borderline	Represents 5% of healthy individuals	
Imbalanced	Represents 60% of unhealthy individuals	

*A progressive ranking scale based on a Genova proprietary algorithm that differentiates healthy and unhealthy commensal patterns.

**The total number of Commensal Bacteria (PCR) that are out of reference ranges for this individual.

Relative Commensal Abundance

	-50)% -2	Cohort +2	5%
Bacteroidetes Phylum				Increase in <i>Bacteroides spp</i> and <i>Odoribacter spp</i> seen in animal-based diets; <i>Prevotella</i> increased with plant-based diet
Firmicutes Phylum				Contains many butyrate-producers; most species responsive to plant-based diets; <i>Faecalibacterium spp.</i> is anti-inflammatory
Actinobacteria Phylum				Bifidobacterium is increased with plant-based diets; Collinsella may be proinflammatory, and is elevated with a Western-diet
Proteobacteria Phylum				Some species may be proinflammatory; <i>E. coli</i> consumes simple sugars and is lower in individuals on plant-based diets
Euryarchaeota Phylum***				Methanobrevibacter smithii is associated with methane production and with diets high in carbohydrates
Fusobacteria Phylum				Certain <i>Fusobacterium spp.</i> may be proinflammatory and increased on low fiber, high fat diets
Verrucomicrobia Phylum				Akkermansia spp. is involved in gut membrane integrity and may be increased with polyphenols and prebiotics

Relative Abundance: The relative abundance compares the quantity of each of 7 major bacterial phyla to a healthy cohort. This can indicate broader variances in the patient's gut microbiome profile. Certain interventions may promote or limit individual phyla when clinically appropriate. Please refer to Genova's Stool Testing Support Guide for more information on modulation of commensal bacteria through diet & nutrient interventions. ***Roughly 75% of the healthy cohort had below detectable levels of *Methanobrevibacter smithii.*

Physician Notes/Recommendations

alient: SAMPLE FATENT									
2200 GI Effects™ Comprehensive Profile - Stool									
ethodology: GC/MS, Automated Chemistry, EIA	Result	1st	2nd	3rd	4th	5th	Reference Range		
	Diges	tion and	Absor	otion					
		1	00	200					
Pancreatic Elastase 1 †	158 L		•				>200 mcg/g		
Products of Protein Breakdown (Total*) (Valerate, Isobutyrate, Isovalerate)	6.0		ł	+	•	+	1.8-9.9 micromol/g		
Fecal Fat (Total*)	19.5	-	l	+		+	3.2-38.6 mg/g		
Triglycerides	1.1	-	l	+	•	+	0.3-2.8 mg/g		
Long-Chain Fatty Acids	12.9	-	l	++	•	+	1.2-29.1 mg/g		
Cholesterol	0.5	⊢ ◆	l	++		+	0.4-4.8 mg/g		
Phospholipids	5.0		ŀ	++		+ • -	0.2-6.9 mg/g		
	Inflamm	ation and	l Immu	nology					
Calprotectin †	145 H		50	120	•		<=50 mcg/g		
Eosinophil Protein X (EPX)†	4.9 H	1.1	1		4.6		<=4.6 mcg/g		
Fecal secretory IgA	206		l	+		+	<=885 mcg/g		
	Gut Mic	crobiome	Metab	olites					
Metabolic									
Short-Chain Fatty Acids (SCFA) (Total*) (Acetate, n-Butyrate, Propionate)	81.3		1	+		+ +	>=23.3 micromol/g		
n-Butyrate Concentration	18.1		ł	+		+ • 1	>=3.6 micromol/g		
n-Butyrate %	22.3			+	•	-	11.8-33.3 %		
Acetate %	63.1		 	++	•		48.1-69.2 %		
Propionate %	14.6	•	ł	+		+	<=29.3 %		
Beta-glucuronidase	2,297						368-6,266 U/g		

*Total value is equal to the sum of all measurable parts.

†These results are not represented by quintile values.

Tests were developed and their performance characteristics determined by Genova Diagnostics. Unless otherwise noted with •, the assays have not been cleared by the U.S. Food and Drug Administration.

© Genova Diagnostics · Robert M. David, PhD, Lab Director · CLIA Lic. #11D0255349 · Medicare Lic. #34-8475 · Georgia Lab Lic. Code #067-007 New York Clinical Lab PFI #4578 · Florida Clinical Lab Lic. #800008124 Page 4

Methodology: DNA by PCR

Gastrointestinal Microbiome (PCR)								
Commensal Bacteria (PCR)	Result CFU/g stool	QUINTILE DISTRIBUTION 1st 2nd 3rd 4th 5th	Reference Range CFU/g stool					
Bacteroidetes Phylum	0.450							
Bacteroides-Prevotella group	2.4 E8		3.4 E6 -1.5 E9					
Bacteroides vulgatus	1.2 E9		<=2.2 E9					
<i>Barnesiella</i> spp.	3.6 E7		<=1.6 E8					
Odoribacter spp.	7.1 E7		<=8.0 E7					
Prevotella spp.	1.4 E8 H	<u> </u>	1.4 E5 -1.6 E7					
Firmicutes Phylum								
Anaerotruncus colihominis	3.4 E7 H		<=3.2 E7					
Butyrivibrio crossotus	5.0 E7 H		5.5 E3 -5.9 E5					
Clostridium spp.	2.1 E8		1.7 E8 -1.5 E10					
Coprococcus eutactus	1.0 E8		<=1.2 E8					
Faecalibacterium prausnitzii	7.5 E8		5.8 E7 -4.7 E9					
Lactobacillus spp.	1.6 E8		8.3 E6 -5.2 E9					
Pseudoflavonifractor spp.	3.0 E8 H		4.2 E5 -1.3 E8					
<i>Roseburia</i> spp.	7.6 E7 L	↓	1.3 E8 -1.2 E10					
Ruminococcus spp.	1.9 E9 H		9.5 E7 -1.6 E9					
<i>Veillonella</i> spp.	1.5 E8 H		1.2 E5 -5.5 E7					
Actinobacteria Phylum								
<i>Bifidobacterium</i> spp.	1.5 E8		<=6.4 E9					
Bifidobacterium longum	1.4 E8		<=7.2 E8					
Collinsella aerofaciens	5.1 E8		1.4 E7 -1.9 E9					
Proteobacteria Phylum								
Desulfovibrio piger	8.7 E7 H		<=1.8 E7					
Escherichia coli	1.3 E8 H		9.0 E4 -4.6 E7					
Oxalobacter formigenes	5.0 E7 H		<=1.5 E7					
Euryarchaeota Phylum								
Methanobrevibacter smithii	1.4 E8 H		<=8.6 E7					
Fusobacteria Phylum	22E7 H							
Fusobacterium spp. Verrucomicrobia Phylum	2.3 E7 H	· · · · · · · · · · · · · · · · · · ·	<=2.4 E5					
Akkermansia muciniphila	3.1 E7	<u> </u>	>=1.2 E6					
Firmicutes/Bacteroidetes Ratio Firmicutes/Bacteroidetes (F/B Ratio)	11 L	↓ ↓ ↓ ↓ ↓ ↓	12-620					

The gray-shaded portion of a quintile reporting bar represents the proportion of the reference population with results below detection limit.

Commensal results and reference range values are displayed in a computer version of scientific notation, where the capital letter "E" indicates the exponent value (e.g., 7.3E6 equates to 7.3 x 10^e or 7,300,000).

The Firmicutes/Bacteroidetes ratio (F/B Ratio) is estimated by utilizing the lowest and highest values of the reference range for individual organisms when patient results are reported as <DL or >UL.

© Genova Diagnostics · Robert M. David, PhD, Lab Director · CLIA Lic. #11D0255349 · Medicare Lic. #34-8475 · Georgia Lab Lic. Code #067-007 New York Clinical Lab PFI #4578 · Florida Clinical Lab Lic. #800008124 NG

No Growth

Methodology: Culture/MALDI-TOF MS, Automated and Manual Biochemical Methods, Vitek® 2 System Microbial identification and Antibiotic susceptibility

Ρ

Pathogen

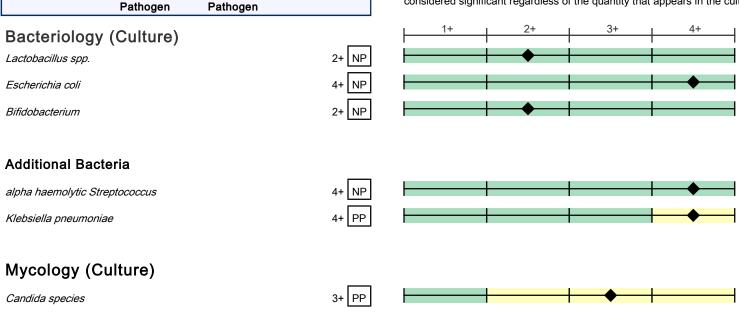
Gastrointestinal Microbiome (Culture)**

Human microflora is influenced by environmental factors and the competitive ecosystem of the organisms in the GI tract. Pathogenic significance should be based upon clinical symptoms.

Microbiology Legend

PP

Potential


NP

Non-

Additional Bacteria

Non-Pathogen: Organisms that fall under this category are those that constitute normal, commensal flora, or have not been recognized as etiological agents of disease.

Potential Pathogen: Organisms that fall under this category are considered potential or opportunistic pathogens when present in heavy growth. **Pathogen:** The organisms that fall under this category have a well-recognized mechanism of pathogenicity in clinical literature and are considered significant regardless of the quantity that appears in the culture.

KOH Preparation for Yeast**

Methodology: Potassium Hydroxide (KOH) Preparation for Yeast

Potassium Hydroxide (KOH) Preparation for Yeast

These yeast usually represent the organisms isolated by culture. In the presence of a negative yeast culture, microscopic yeast may reflect organisms not viable enough to grow in culture. The presence of yeast on KOH prep should be correlated with the patient's symptoms. However, moderate to many yeast suggests yeast overgrowth.

Result

KOH Preparation, stool

Few Yeast Present

The result is reported as the amount of yeast seen microscopically: Rare: 1-2 per slide Few: 2-5 per high power field (HPF) Moderate: 5-10 per HPF Many: >10 per HPF

** Indicates testing performed by Genova Diagnostics, Inc. 63 Zillicoa St., Asheville, NC 28801-0174 A. L. Peace-Brewer, PhD, D(ABMLI), Lab Director - CLIA Lic. #34D0655571 - Medicare Lic. #34-8475

Parasitology**

Microscopic O&P Results

Microscopic O&P is capable of detecting all described gastrointestinal parasites. The organisms listed in the box represent those commonly found in microscopic stool analysis. Should an organism be detected that is not included in the list below, it will be reported in the Additional Results section. For an extensive reference of all potentially detectable organisms, please visit www.gdx.net/product/gi-effects-comprehensive-stool-test

Genus/species	Result
Nematodes - roundworms	
Ancylostoma/Necator (Hookworm)	Not Detected
Ascaris lumbricoides	Not Detected
Capillaria philippinensis	Not Detected
Enterobius vermicularis	Not Detected
Strongyloides stercoralis	Not Detected
Trichuris trichiura	Not Detected
Cestodes - tapeworms	
Diphyllobothrium latum	Not Detected
Dipylidium caninum	Not Detected
Hymenolepis diminuta	Not Detected
Hymenolepis nana	Not Detected
Taenia spp.	Not Detected
Trematodes - flukes	
Clonorchis/Opisthorchis spp.	Not Detected
Fasciola spp./ Fasciolopsis buski	Not Detected
Heterophyes/Metagonimus	Not Detected
Paragonimus spp.	Not Detected
Schistosoma spp.	Not Detected
Protozoa	
Balantidium coli	Not Detected
Blastocystis spp.	Rare Detected
Chilomastix mesnili	Not Detected
Cryptosporidium spp.	Not Detected
Cyclospora cayetanensis	Not Detected
Dientamoeba fragilis	Moderate Detected
Entamoeba coli	Not Detected
Entamoeba histolytica/dispar	Not Detected
Entamoeba hartmanii	Not Detected
Entamoeba polecki	Not Detected
Endolimax nana	Not Detected
Giardia	Not Detected
Iodamoeba buetschlii	Not Detected
Cystoisospora spp.	Not Detected
Trichomonads (e.g. Pentatrichomonas)	Not Detected
Additional Findings	
White Blood Cells	Not Detected
Charcot-Leyden Crystals	Not Detected
Other Infectious Findings	

One negative specimen does not rule out the possibility of a parasitic infection.

** Indicates testing performed by Genova Diagnostics, Inc. 63 Zillicoa St., Asheville, NC 28801-0174 A. L. Peace-Brewer, PhD, D(ABMLI), Lab Director - CLIA Lic. #34D0655571 - Medicare Lic. #34-8475

Parasitology									
PCR Parasitology - Proto	zoa**	Met	hodologies: DNA by PCI	R, Next Generation Sequencing					
Organism	Result	Units		Expected Result					
Blastocystis spp.	6.00e2	femtograms/microliter C&S stool	Detected	Not Detected					
Cryptosporidium parvum/hominis	<1.76e2	genome copies/microliter C&S stool	Not Detected	Not Detected					
Cyclospora cayetanensis	<2.65e2	genome copies/microliter C&S stool	Not Detected	Not Detected					
Dientamoeba fragilis	6.40e2	genome copies/microliter C&S stool	Detected	Not Detected					
Entamoeba histolytica	<9.64e1	genome copies/microliter C&S stool	Not Detected	Not Detected					
Giardia	<1.36e1	genome copies/microliter C&S stool	Not Detected	Not Detected					
Blastocystis spp. Reflex Subty	ping								
Type 1: Not Detected	Type 4:	Not Detected Type 7:	Not Detected						
Type 2: Detected	Type 5:	Not Detected Type 8:	Not Detected						
Type 3: Not Detected	Type 6:	Not Detected Type 9:	Not Detected						
** Indicates testing performed by Genova Diagno A. L. Peace-Brewer, PhD, D(ABMLI), Lab Diro									
		Additional Results							
Methodology: Fecal Immunochemical Test	<i>ing (FIT)</i> Result	Expected Value							
Fecal Occult Blood◆	Negative	Negative							
Color††	Green								
Consistency††	Formed/No	ormal							

††Results provided from patient input.

Tests were developed and their performance characteristics determined by Genova Diagnostics. Unless otherwise noted with •, the assays have not been cleared by the U.S. Food and Drug Administration.

Zonulin Family Peptide							
Methodology: EIA	Result	Reference Range	Zonulin Family Peptide				
Zonulin Family Peptide, Stool	100.0	22.3-161.1 ng/mL	This test is for research use only. Genova will not provide support on interpreting the test results. This test does not detect zonulin. ¹ The Scheffler paper suggests that the IDK				
			kit may detect a zonulin family peptide, such as properdin Genova's unpublished data demonstrated that the current IDK kit results were associated with stool inflammation biomarkers and an inflammation-associated dysbiosis				
			profile. The performance characteristics of Zonulin Family Peptid have been verified by Genova Diagnostics, Inc. The assay has not been cleared by the U.S. Food and Drug				

Administration.

Reference:

1. Scheffler L, et al. Widely Used Commercial ELISA Does Not Detect Precursor of Haptoglobin2, but

Recognizes Properdin as a Potential Second Member of the Zonulin Family. Front Endocrinol. 2018;9:22.

Macroscopic/Direct Exam for Parasites **

Methodology: Macroscopic Evaluation

No human parasite detected in sample.

Add-on Testing									
Methodology: EIA	Result	Expected Value	HpSA (<i>Helicobacter pylori</i> stool antigen)						
HpSA - <i>H. pylori</i>	Negative	Negative	Helicobacter pylori is a bacterium which causes peptic ulcer disease and plays a role in the development of						
<i>Campylobacter</i> spp.◆**	Negative	Negative	gastric cancer. Direct stool testing of the antigen (HpSA) is highly accurate and is appropriate for diagnosis and						
Clostridium difficile ◆**	Negative	Negative	follow-up of infection.						
Shiga toxin <i>E. coli∙*</i> *	Negative	Negative							
Fecal Lactoferrin +**	Negative	Negative							

Clostridium difficile

Clostridium difficile is an anaerobic, spore-forming gram-positive bacterium. After a disturbance of the gut flora (usually with antibiotics), colonization with *Clostridium difficile* can take place. *Clostridium difficile* infection is much more common than once thought.

Shiga toxin E. coli

Shiga toxin-producing *Escherichia coli* (STEC) is a group of bacterial strains that have been identified as worldwide causes of serious human gastrointestinal disease. The subgroup enterohemorrhagic *E. coli* includes over 100 different serotypes, with 0157:H7 being the most significant, as it occurs in over 80% of all cases. Contaminated food continues to be the principal vehicle for transmission; foods associated with outbreaks include alfalfa sprouts, fresh produce, beef, and unpasteurized juices.

** Indicates testing performed by Genova Diagnostics, Inc. 63 Zillicoa St., Asheville, NC 28801-0174

A. L. Peace-Brewer, PhD, D(ABMLI), Lab Director - CLIA Lic. #34D0655571 - Medicare Lic. #34-8475

Tests were developed and their performance characteristics determined by Genova Diagnostics. Unless otherwise noted with •, the assays have not been cleared by the U.S. Food and Drug Administration.

Methodology: Vitek 2® System Microbial Antibiotic susceptibility, Manual Minimum Inhibition Concentration

Mycology Sensitivity

Azole Antifungals

/ Zolo / Intilangulo						
Candida species	R	1	S-DD	S		NI
Fluconazole				0.5		
Voriconazole				<=0.008		
Nystatin	=50					
Natural Agents						
Candida species		N			I	HIGH INHIBITION
Berberine						
Caprylic Acid						
Garlic						
Undecylenic Acid						
Plant tannins						
Uva-Ursi						

Prescriptive Agents:

The R (Resistant) category implies isolate is not inhibited by obtainable levels of pharmaceutical agent.

The I (Intermediate) category includes isolates for which the minimum inhibition concentration (MIC) values usually approach obtainable pharmaceutical agent levels and for which response rates may be lower than for susceptible isolates.

The S-DD (Susceptible-Dose Dependent) category implies clinical efficacy when higher than normal dosage of a drug can be used and maximal concentration achieved.

The S (Susceptible) column implies that isolates are inhibited by the usually achievable concentrations of the pharmaceutical agent.

NI (No Interpretive guidelines established) category is used for organisms that currently do not have established guidelines for MIC interpretation.

Refer to published pharmaceutical guidelines for appropriate dosage therapy.

Nystatin and Natural Agents:

Results for Nystatin are being reported with natural antifungals in this category in accordance with laboratory guidelines for reporting sensitivities. In this assay, inhibition is defined as the reduction level on organism growth as a direct result of inhibition by a natural substance. The level of inhibition is an indicator of how effective the substance was at limiting the growth of an organism in an in vitro environment. High inhibition indicates a greater ability by the substance to limit growth, while Low Inhibition a lesser ability to limit growth. The designated natural products should be considered investigational in nature and not be viewed as standard clinical treatment substances.

Methodology: Vitek 2® System Microbial Antibiotic susceptibility, Manual Minimum Inhibition Concentration

Bacteria Sensitivity

Prescriptive Agents

			_			_	
Klebsiella pneumoniae	R	1		S-DD	S		NI
Ampicillin	R						
Amox./Clavulanic Acid					S		
Cephalothin					S		
Ciprofloxacin					S		
Tetracycline					S		
Trimethoprim/Sulfa					S		
Natural Agents							
Klebsiella pneumoniae	LOW INHIBITION					н	

Klebsiella pneumoniae	LOW INHIBITION	HIGH INHIBITION
Berberine		
Oregano		
Plant Tannins		
Uva-Ursi		

Prescriptive Agents:

The R (Resistant) category implies isolate is not inhibited by obtainable levels of pharmaceutical agent.

The I (Intermediate) category includes isolates for which the minimum inhibition concentration (MIC) values usually approach obtainable pharmaceutical agent levels and for which response rates may be lower than for susceptible isolates.

The S-DD (Susceptible-Dose Dependent) category implies clinical efficacy when higher than normal dosage of a drug can be used and maximal concentration achieved.

The S (Susceptible) column implies that isolates are inhibited by the usually achievable concentrations of the pharmaceutical agent.

NI (No Interpretive guidelines established) category is used for organisms that currently do not have established guidelines for MIC interpretation.

Refer to published pharmaceutical guidelines for appropriate dosage therapy.

Natural Agents:

In this assay, inhibition is defined as the reduction level on organism growth as a direct result of inhibition by a substance. The level of inhibition is an indicator of how effective the substance was at limiting the growth of an organism in an in vitro environment. High inhibition indicates a greater ability by the substance to limit growth, while Low Inhibition a lesser ability to limit growth. The designated natural products should be considered investigational in nature and not be viewed as standard clinical treatment substances.

ENSURE THE FOLLOWING:

Peel and stick labels completed with patient's date of birth are on all tubes as well as the test requisition form

All tubes:

- Are tightly closed
- □ Sealed in the biohazard bag with absorbent pad
- □ Refrigerated until packaged for shipping

All required information:

- All sections of test requisition form completed either online or on the included paper form. If using the online form, the paper form must still be returned with the health care provider's signature
- □ Health survey completed
- Payment information provided
- □ All tubes and associated forms placed back in the original Genova sample collection pack box prior to shipping

SHIP THE SAMPLE(S) TO THE LAB

Ship only Monday through Friday, and within 24 hours after final collection.

Please refer to the shipping instruction insert found in your Genova sample collection pack box.

REGISTER FOR THE PATIENT RESOURCE CENTER AT WWW.GDX.NET/PRC

- Complete health surveys
- Make payments
- Access test results

GASTROINTESTINAL 1 DAY COLLECTION

PATIENT SAMPLE COLLECTION INSTRUCTIONS FOR THE FOLLOWING PROFILE(S)							
GI Effects Comprehensive Profile*	Stool	#2200					
GI Effects Microbial Ecology Profile*	Stool	#2205					
GI Effects Gut Pathogen Profile*	Stool	#2207					
CDSA™ (Comprehensive Digestive Stool Analysis)	Stool	#2000					
CDSA 2.0 without Parasitology	Stool	#2002					

COLLECTION MATERIALS FOR SAMPLE

• CAUTION: Tubes contain poisonous liquid. KEEP OUT OF REACH OF CHILDREN.

- Tubes are under pressure. Cover tube cap with a cloth and remove cap slowly.
- For eye contact, flush with water for 15 mins.
- For skin contact, wash with soap and water.
- For ingestion, contact poison control center immediately.

REQUIRED MATERIALS

- Disposable glove (vinyl)
- Peel and stick labels
- Black disposable bag
- Absorbent pads
- Test requisition form

IMPORTANT INFORMATION BEFORE YOU BEGIN THE COLLECTION

- Test not recommended for patients under 2 years of age.
- Wait at least 4 Weeks from colonoscopy or barium enema before starting the test.
- Please consult with your physician before stopping any medications. Certain medications and/or supplements may impact test results.
- 2 to 4 Weeks Before the Test:

» Discontinue antibiotics, antiparasitics, antifungals, probiotic supplements (acidophilus, etc.).
 » Discontinue proton pump inhibitors (PPIs), and bismuth 14 Days prior if adding on the H. pylori test.

- 2 Days Before the Test:
- » Discontinue aspirin and other NSAIDs (i.e. ibuprofen), rectal suppositories, enemas, activated charcoal, bismuth, betaine HCL, digestive enzymes, antacids, laxatives, mineral oil, castor oil, and/or bentonite clay.
- DO NOT collect samples when there is active bleeding from hemorrhoids or menstruation.
- Before collecting your specimen refer to the shipping instruction to determine what day you can ship. Ship only Monday through Friday, and within 24 hours after final collection.

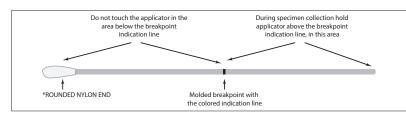
- Biohazard bags
- Genova sample collection pack box
- FedEx[®] Clinical Lab Pak and Billable Stamp
- Health survey

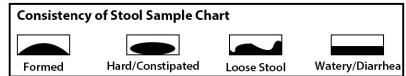
COLLECTION

Completely fill out front and back of test requisition form using the included form or online at www.gdx.net/register. Failure to provide all information will result in delay of test processing.

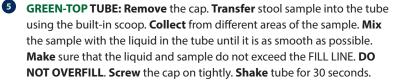
2 Using the peel and stick labels provided record the patient's date of birth and place a label on each of the tubes and the test requisition form

STOOL COLLECTION


- **3** Put on the glove.
- Collect your stool sample using the enclosed collection container. DO
 NOT contaminate the sample with either urine or water from the toilet.



BLENDED SAMPLE & PRESERVATIVE CANNOT EXCEED THE RED FILL LINE


- Peel open swab package, remove the tube, and place it upright. The swab should remain in the sleeve until you are ready to collect sample.
- 8 **Grasp** swab above the molded breakpoint which is the opposite end from the nylon applicator tip. (see diagram below)

- Collect sample by inserting the ROUNDED NYLON END* (see above) of the swab into the stool sample and rotate it. Confirm that the swab contains fecal material. If not, repeat.
- **Open** the swab collection tube and insert the swab. **Mash** and **mix** the rounded nylon end of the swab with stool on it against the side of the tube.
- Break the swab off at the break point. Place the screw cap on the tube and tighten. Shake the tube. Using the peel and stick label, write patient's date of birth on the label and apply to the swab tube.
- Record the date of collection, stool consistency (refer to chart below), and stool color for Day 3 Collection only, on the Test Requisition Form in the sample consistency, sample color, and collection date areas.

- **13** Dispose of remaining sample into toilet and put collection container and glove in black disposable bag.
- Place all tubes in the biohazard bag and refrigerate. Refrigerate until ready to ship. DO NOT FREEZE.

NOTE: If a worm is seen, **DO NOT place** it in tube with stool. Instead **place** it in **GREEN-TOP TUBE WITHOUT** scooping additional stool. Alternatively, a worm can be placed in a clean glass jar with rubbing alcohol, with no additional stool added to jar. Make note on requisition form that a worm was seen and write **WORM** on the tube. **Do not mix and mash** sample if there is a worm inside. **Do not shake tube** if there is a worm inside.

Repeat STEPS 3 through 5 with ORANGE-TOP TUBE, PINK-TOP TUBE, and the WHITE-TOP TUBE.

Note: There is no liquid in the WHITE-TOP TUBE.

ENSURE THE FOLLOWING:

Peel and stick labels completed with patient's date of birth are on all tubes as well as the test requisition form

All tubes:

- Are tightly closed
- □ Sealed in the biohazard bag with absorbent pad
- Refrigerated until packaged for shipping

All required information:

- □ All sections of test requisition form completed either online or on the included paper form. If using the online form, the paper form must still be returned with the health care provider's signature
- Health survey completed
- Payment information provided
- □ All tubes and associated forms placed back in the original Genova sample collection pack box prior to shipping

SHIP THE SAMPLE(S) TO THE LAB

Ship only Monday through Friday, and within 24 hours after final collection.

Please refer to the shipping instruction insert found in your Genova sample collection pack box.

REGISTER FOR THE PATIENT RESOURCE CENTER AT WWW.GDX.NET/PRC

- Complete health surveys
- Make payments
- Access test results

Call 800.522.4762 or visit our website at www.gdx.net

GASTROINTESTINAL 3 DAY COLLECTION

PATIENT SAMPLE COLLECTION INSTRUCTIONS FOR THE FOLLOWING PROFILE(S)GI Effects Comprehensive Profile*Stool#2200GI Effects Microbial Ecology Profile*Stool#2205GI Effects Gut Pathogen Profile*Stool#2207CDSA with ParasitologyStool#2001

COLLECTION MATERIALS FOR SAMPLE

CDSA 2.0

Stool

#2003

• CAUTION: Tubes contain poisonous liquid. KEEP OUT OF REACH OF CHILDREN.

- Tubes are under pressure. Cover tube cap with a cloth and remove cap slowly.
- For eye contact, flush with water for 15 mins.
- For skin contact, wash with soap and water.
- For ingestion, contact poison control center immediately.

REQUIRED MATERIALS

- Disposable gloves (3) (vinyl)
- Peel and stick labels
- Black disposable bags
- Absorbent pads
- Test requisition form

IMPORTANT INFORMATION BEFORE YOU BEGIN THE COLLECTION

- Test not recommended for patients under 2 years of age.
- Wait at least 4 Weeks from colonoscopy or barium enema before starting the test.
- Please consult with your physician before stopping any medications. Certain medications and/or supplements may impact test results.
- 2 to 4 Weeks Before the Test:

» Discontinue antibiotics, antiparasitics, antifungals, probiotic supplements (acidophilus, etc.). » Discontinue proton pump inhibitors (PPIs), and bismuth **14 Days prior** *if adding on the H. pylori test.*

Biohazard bags

Health survey

· Genova sample collection pack box

FedEx[®] Clinical Lab Pak and Billable Stamp

- 2 Days Before the Test:
- » Discontinue aspirin and other NSAIDs (i.e. ibuprofen), rectal suppositories, enemas, activated charcoal, bismuth, betaine HCL, digestive enzymes, antacids, laxatives, mineral oil, castor oil, and/or bentonite clay.
- DO NOT collect samples when there is active bleeding from hemorrhoids or menstruation.
- Before collecting your specimen refer to the shipping instruction to determine what day you can ship. Ship only Monday through Friday, and within 24 hours after final collection.

COLLECTION

- Completely fill out front and back of test requisition form using the included form or online at www.gdx.net/register.
 Failure to provide all information will result in delay of test processing.
- Using the peel and stick labels provided record the patient's date of birth and place a label on each of the tubes and the test requisition form.

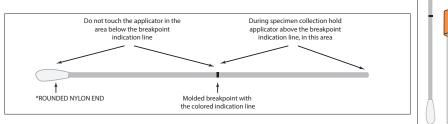
STOOL COLLECTION DAY ONE

- **3 Put on** the glove.
- Collect your stool sample using the enclosed collection container. DO NOT contaminate the sample with either urine or water from the toilet.
- GREEN-TOP TUBE: Remove the cap. Transfer stool sample into the tube using the built-in scoop. Collect from different areas of the sample. Mix the sample with the liquid in the tube until it is as smooth as possible. Make sure that the liquid and sample do not exceed the FILL LINE. DO NOT OVERFILL. Screw the cap on tightly. Shake tube for 30 seconds.

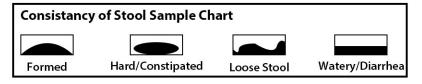
NOTE: If a worm is seen, **DO NOT place** it in tube with stool. Instead **place** it in **GREEN-TOP TUBE WITHOUT** scooping additional stool. Alternatively, a worm can be placed in a clean glass jar with rubbing alcohol, with no additional stool added to jar. Make note on requisition form that a worm was seen and write **WORM** on the tube. **Do not mix and mash** sample if there is a worm inside. **Do not shake tube** if there is a worm inside.

- 6 Place in biohazard bag and refrigerate. **Refrigerate** tube until ready to ship. **DO NOT FREEZE.**
- **Dispose of remaining sample** into toilet and put collection container and glove in **black disposable bag.**

STOOL COLLECTION DAY TWO


- **Follow Steps 3 through 6** using the contents of the DAY 2 bag including the **GREEN-TOP TUBE**.
- **Dispose of remaining sample** into toilet and put collection container and glove in **black disposable bag.**

STOOL COLLECTION DAY THREE


- Repeat STEPS 3 through 6 with GREEN-TOP TUBE, ORANGE-TOP TUBE, PINK-TOP TUBE, and the WHITE-TOP TUBE. Note: There is no liquid in the WHITE-TOP TUBE.
- Peel open swab package, remove the tube, and place it upright. The swab should

remain in the sleeve until you are ready to collect sample.

- **12 Grasp** swab above the molded breakpoint which is the opposite end from the
 - nylon applicator tip. (see diagram below)

- Collect sample by inserting the ROUNDED NYLON END* (see above) of the swab into the stool sample and rotate it. Confirm that the swab contains fecal material. If not, repeat.
- **Open** the swab collection tube and insert the swab. **Mash** and **mix** the rounded nylon end of the swab with stool on it against the side of the tube.
- Break the swab off at the break point. Place the screw cap on the tube and tighten. Shake the tube. Using the peel and stick label, write patient's date of birth on the label and apply to the swab tube.
- Record the date of collection, stool consistency (refer to chart below), and stool color for Day 3 Collection only, on the Test Requisition Form in the sample consistency, sample color, and collection date areas.

- **Dispose of remaining sample** into toilet and put collection container and glove in **black disposable bag.**
- Place all tubes in the biohazard bag and refrigerate. Refrigerate until ready to ship. DO NOT FREEZE.

BLENDED SAMPLE & PRESERVATIVE

CANNOT EXCEED

THE RED FILL LINE

Genova

Requisition