

Amino Acids (Plasma)

Patient: Sample Patient

63 Zillicoa Street Asheville, NC 28801 © Genova Diagnostics

Page 2

SUGGESTED SUPPLEMENT SCHEDULE

Supplements	Daily Recommended Intake (DRI)	Patient's Daily Recommendations	Provider Daily Recommendations
Antioxidants			
Vitamin A / Carotenoids	2,333 IU	3,000 IU	
Vitamin C	75 mg	250 mg	
Vitamin E / Tocopherols	22 IU	100 IU	
B-Vitamins			
Thiamin - B1	1.1 mg	10 mg	
Riboflavin - B2	1.1 mg	10 mg	
Niacin - B3	14 mg	20 mg	
Pyridoxine - B6	1.5 mg	10 mg	
Folic Acid - B9	400 mcg	400 mcg	
Cobalamin - B12	2.4 mcg	100 mcg	
Minerals			
Magnesium	320 mg	400 mg	
Manganese	1.8 mg	3.0 mg	
Molybdenum	45 mcg	75 mcg	
Zinc	8 mg	20 mg	
Digestive Support			
Pancreatic Enzymes		0 IU	
Amino Acid m	ng/day A	mino Acid	mg/day

Amino Acid	mg/day	Amino Acid	mg/day
Arginine	473	Methionine	
Asparagine	0	Phenylalanine	52
Cysteine	165	Serine	
Glutamine	64	Taurine	40
Glycine	0	Threonine	
Histidine	0	Tryptophan	
Isoleucine	200	Tyrosine	196
Leucine	415	Valine	291
Lysine	0		

Recommendations for age and gender-specific supplementation are set by comparing levels of nutrient functional need to optimal levels as described in the peer-reviewed literature. They are provided as guidance for short-term support of nutritional deficiencies only.

The Suggested Supplemental Schedule is provided at the request of the ordering practitioner. Any application of it as a therapeutic intervention is to be determined by the ordering practitioner.

Amino Acids, Plasma Interpretation At-A-Glance

Nutritional Needs

Antioxidants

Vitamin A / Carotenoids 🗙	· · · · ·		1 1
	3,000 IU	5,000 IU	10,000 IU
Beta-carotene & other carotenc in vision, antioxidant & immune	oids are converted to e function, gene expre	vitamin A (retine ssion & cell gro	ol), involved wth.
Vitamin A deficiency may occur hypothyroidism, or oral contrac	r with chronic alcoholi ceptives containing es	sm, zinc deficie trogen & proges	ency, stin.
Deficiency may result in night b tissue regeneration, increased	olindness, impaired im risk of infection, leuko	nmunity, healing oplakia or kerato	∣& osis.
Food sources include cod liver	oil, fortified cereals &	milk, eggs, swe	eet potato,
numpkin corret contaloune m	ango aningoh brogo	ali kala 8 hutta	rout oquoob
pumpkin, carrot, cantaloupe, m	nango, spinach, brocc	oli, kale & butte	rnut squash.
pumpkin, carrot, cantaloupe, m	nango, spinach, brocc	oli, kale & butte	rnut squash.
pumpkin, carrot, cantaloupe, m	hango, spinach, brocc	oli, kale & butte	rnut squash.
pumpkin, carrot, cantaloupe, m Vitamin E / Tocopherols	hango, spinach, brocc	oli, kale & butte	rnut squash.
pumpkin, carrot, cantaloupe, m Vitamin E / Tocopherols	nango, spinach, brocc	oli, kale & butte	rnut squash. 400 IU
 pumpkin, carrot, cantaloupe, m Vitamin E / Tocopherols Alpha-tocopherol (body's main regulates cell signaling, influen 	100 IU form of vitamin E) function	oli, kale & butte	400 IU tioxidant, agulation.
 pumpkin, carrot, cantaloupe, m Vitamin E / Tocopherols Alpha-tocopherol (body's main regulates cell signaling, influen Deficiency may occur with mala orlistat, olestra, and certain ant 	100 IU form of vitamin E) furnces immune function labsorption, cholestyra ti-convulsants (e.g., p	200 IU 200 IU nctions as an ar and inhibits coa amine, colestipo henobarbital, pl	400 IU 400 IU ntioxidant, agulation. I, isoniazid, nenytoin).
 pumpkin, carrot, cantaloupe, m Vitamin E / Tocopherols Alpha-tocopherol (body's main regulates cell signaling, influen Deficiency may occur with mala orlistat, olestra, and certain ant Deficiency may result in periph retinopathy, and increased risk 	100 IU 100 IU form of vitamin E) funces immune function labsorption, cholestyra ti-convulsants (e.g., p neral neuropathy, atax < of CVD, prostate car	200 IU 200 IU nctions as an ar and inhibits coa amine, colestipo henobarbital, pl tia, muscle wea ncer and catara	400 IU 400 IU ntioxidant, agulation. bl, isoniazid, nenytoin). kness, cts.

250 mg 500 mg 1,000 r	amin C	×			
• •		250 mg	500	mg 1,000	mg
Vitamin C is an antioxidant (also used in the regeneration of other antioxidar	/itamin C is an antio	kidant (also used in the r	egeneration of	other antioxid	ants).

It is involved in cholesterol metabolism, the production & function of WBCs and antibodies, and the synthesis of collagen, norepinephrine and carnitine.

Deficiency may occur with oral contraceptives, aspirin, diuretics or NSAIDs.

Deficiency can result in scurvy, swollen gingival, periodontal destruction, loose teeth, sore mouth, soft tissue ulcerations, or increased risk of infection.

Food sources include oranges, grapefruit, strawberries, tomato, sweet red pepper, broccoli and potato.

Amino Acids, Plasma Interpretation At-A-Glance

Nutritional Needs

B-Vitamins

Thiamin - B1	Pyridoxine - B6
10 mg 25 mg 50 mg B1 is a required cofactor for enzymes involved in energy production from food	10 mg 25 mg 50 mg ▶ B6 (as P5P) is a cofactor for enzymes involved in glycogenolysis & gluconeo-
 and in the synthesis of ATP, GTP, DNA, RNA and NADPH. Low B1 can result from chronic alcoholism, diuretics, digoxin, oral contraceptives and HRT or large amounts of tea & coffee (contain anti-B1 factors). B1 deficiency may lead to dry beriberi (e.g., neuropathy, muscle weakness), wet beriberi (e.g., cardiac problems, edema), encephalopathy or dementia. Food sources include lentils, whole grains, wheat germ, Brazil nuts, peas, organ meats, brewer's yeast, blackstrap molasses, spinach, milk & eggs. 	 genesis and synthesis of neurotransmitters, heme, B3, RBCs and nucleic acids. Low B6 may result from chronic alcoholism, long-term diuretics, estrogens (oral contraceptives and HRT), anti-TB meds, penicillamine, L-DOPA, or digoxin. B6 deficiency may result in neurologic symptoms (e.g., irritability, depression, seizures), oral inflammation, impaired immunity or increased homocysteine. Food sources include poultry, beef, beef liver, fish, whole grains, wheat germ, soybean, lentils, nuts & seeds, potato, spinach and carrots.
Riboflavin - B2	Folic Acid - B9
 10 mg 25 mg 50 mg B2 is a key component of enzymes involved in antioxidant function, energy production, detoxification, methionine metabolism and vitamin activation. Low B2 may result from chronic alcoholism, some anti-psychotic medications, oral contraceptives, tricyclic antidepressants, quinacrine or adriamycin. B2 deficiency may result in oxidative stress, mitochondrial dysfunction, low uric acid, low B3 or B6, high Homocysteine, anemia or oral & throat inflammation. Food sources include milk, cheese, eggs, whole grains, beef, chicken, wheat germ, fish, broccoli, asparagus, spinach, mushrooms and almonds. 	 400 mcg 800 mcg 1,200 mcg Folic acid plays a key role in coenzymes involved in DNA and SAMe synthesis, methylation, nucleic acids & amino acid metabolism and RBC production. Low folate may result from alcoholism, high-dose NSAIDs, diabetic meds, H2 blockers, some diuretics and anti-convulsants, SSRIs, methotrexate, trimethoprim, pyrimethamine, triamterene, sulfasalazine or cholestyramine. Folate deficiency can result in anemia, fatigue, low methionine, increased homocysteine, impaired immunity, heart disease, birth defects and CA risk. Food sources include fortified grains, green vegetables, beans & legumes.
	Cobalamin - B12
 20 mg 30 mg 50 mg B3 is used to form NAD and NADP, involved in energy production from food, fatty acid & cholesterol synthesis, cell signaling, DNA repair & cell differentiation. Low B3 may result from deficiencies of tryptophan (B3 precursor), B6, B2 or Fe (cofactors in B3 production), or from long-term isoniazid or oral contraceptive use. B3 deficiency may result in pellagra (dermatitis, diarrhea, dementia), neurologic symptoms (e.g., depression, memory loss), bright red tongue, or fatigue. Food sources include poultry, beef, organ meats, fish, whole grains, peanuts, seeds, lentils, brewer's yeast and lima beans. 	 100 mcg 500 mcg 1,000 mcg B12 plays important roles in energy production from fats & proteins, methylation, synthesis of hemoglobin & RBCs, and maintenance of nerve cells, DNA & RNA. Low B12 may result from alcoholism, malabsorption, hypochlorhydria (e.g., from atrophic gastritis, H. pylori infection, pernicious anemia, H2 blockers, PPIs), vegan diets, diabetic meds, cholestyramine, chloramphenicol, neomycin or colchicine. B12 deficiency can lead to anemia, fatigue, neurologic symptoms (e.g., paresthesias, memory loss, depression, dementia), methylation defects or chromosome breaks. Food sources include shellfish, red meat poultry, fish, eggs, milk and cheese.

Nutritional Needs

Amino Acids, Plasma Interpretation At-A-Glance

Minerals

Manganese	_		
	3.0 mg	5.0 mg	7.0 mg
 Manganese plays an important the urea cycle, cartilage & box 	nt role in antioxidant ne formation, energy	function, gluconed production and d	ogenesis, igestion.
 Impaired absorption of Mn ma or phosphorous compounds, or laxatives. 	ay occur with excess or use of long-term T	intake of Fe, Ca, PN, Mg-containin	Cu, folic acid g antacids
 Deficiency may result in impa lipid dysregulation, infertility, or 	ired bone/connective oxidative stress, infla	e tissue growth, gl mmation or hyper	ucose & ammonemia.
 Deficiency may result in impa lipid dysregulation, infertility, o Food sources include whole g leafy vegetables, liver, kidney 	ired bone/connective oxidative stress, infla grains, legumes, drie v and tea.	tissue growth, gl mmation or hyper d fruits, nuts, dark	ucose & ammonemia. green
 Deficiency may result in impa lipid dysregulation, infertility, of Food sources include whole of leafy vegetables, liver, kidney Molybdenum 	ired bone/connective oxidative stress, infla grains, legumes, dried v and tea.	e tissue growth, gli mmation or hyper d fruits, nuts, dark	ucose & ammonemia. green

- Low Mo levels may result from long-term TPN that does not include Mo.
- Mo deficiency may result in increased sulfite, decreased plasma uric acid (and antioxidant function), deficient sulfate, impaired sulfation (detoxification), neurologic disorders or brain damage (if severe deficiency).
- Food sources include buckwheat, beans, grains, nuts, beans, lentils, meats and vegetables (although Mo content of plants depends on soil content).

Magnesium			
	400 mg	600 mg	800 mg
Mg is involved in >300 meta production, bone & ATP form	abolic reactions. Key an	reas include ener	rgy
	mation, muscle & nerve	e conduction and	cell signaling.
Deficiency may occur with m	nalabsorption, alcoholis	sm, hyperparathy	roidism,
renal disorders (wasting), dia	abetes, diuretics, digox	kin or high doses	of zinc.
Low Mg may result in muscle	le weakness/spasm, co	onstipation, depre	ession,
hypertension, arrhythmias, h	nypocalcemia, hypokale	emia or personal	ity changes.
Food sources include dark le	eafy greens, oatmeal, t	ouckwheat, unpo	lished
grains, chocolate, milk, nuts	& seeds, lima beans a	ind molasses.	

Zinc	I	Ι	Ι	X	I			I
	10	mg		2	20 m	g	3	30 mg

- Zinc plays a vital role in immunity, protein metabolism, heme synthesis, growth & development, reproduction, digestion and antioxidant function.
- Low levels may occur with malabsorption, alcoholism, chronic diarrhea, diabetes, excess Cu or Fe, diuretics, ACE inhibitors, H2 blockers or digoxin.
- Deficiency can result in hair loss and skin rashes, also impairments in growth & healing, immunity, sexual function, taste & smell and digestion.
- Food sources include oysters, organ meats, soybean, wheat germ, seeds, nuts, red meat, chicken, herring, milk, yeast, leafy and root vegetables.

Digestive Support

Need for Pancreatic Enzymes		K	1	I				
	0 IU		5	,000) IU	10	0,000	ΙU

- Pancreatic enzymes are secreted by the exocrine glands of the pancreas and include protease/peptidase, lipase and amylase.
- Pancreatic exocrine insufficiency may be primary or secondary in nature. Any indication of insufficiency warrants further evaluation for underlying cause (i.e., celiac disease, small intestine villous atrophy, small bowel bacterial overgrowth).
- A high functional need for digestive enzymes suggests that there is an impairment related to digestive capacity.
- Determining the strength of the pancreatic enzyme support depends on the degree of functional impairment. Supplement potency is based on the lipase units present in both prescriptive and non-prescriptive agents.

All biomarkers reported in micromoles per deciliter unless stated otherwise.

Nutritionall	v Essential	Amino Acids	
- Turner of Turner			

ID:

Amino Acid		Reference Range
Arginine	4.4	6.0-17.5
Histidine	7.7	6.5-13.3
Isoleucine	6.54	5.79-18.69
Leucine	12.0	12.1-36.1
Lysine	17.3	13.7-34.7
Methionine	3.2	2.3-6.5
Phenylalanine	7.32	6.07-17.46
Taurine	5.26	4.41-10.99
Threonine	9.00	6.42-16.32
Tryptophan	4.46	2.65-6.67
Valine	16.8	18.3-42.6

Nonessential Protein Amino Acids

Amino Acid		Refe	rence Range
Alanine	25		23-62
Asparagine	5.3		3.5-11.6
Aspartic Acid	dl		<= 0.67
Cyst(e)ine	5.9		5.9-19.9
γ-Aminobutyric Acid	0.05		<= 0.06
Glutamic Acid	4.6		2.0-14.5
Glutamine	53		44-111
Proline	26		15-57
Tyrosine	6.5		6.2-18.5

Methodology: LC/MS/MS

Amino Acid Reference Ranges are age specific.

The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Assays have not been cleared by the U.S. Food and Drug Administration.

Page 6 Amino Acids (Plasma)

Intermediary Metabolites							
B Vitamin Markers			Reference Range				
α-Aminoadipic Acid (0.12			<= 0.28			
α-Amino-N-butyric Acid		3.00		1.76-9.99			
β-Aminoisobutyric Acid	0.17			<= 0.72			
Cystathionine	0.04			<= 0.09			
3-Methylhistidine	0.28			<= 0.78			
Urea Cycle Markers	5						
Citrulline		.8		1.6-5.7			
Ornithine		8.26		4.38-15.42			
Urea		341		216-1,156			
Glycine/Serine Me	etabo	olites					
Glycine		14		5-23			
Serine		5.5		2.1-7.0			
Ethanolamine		0.31		0.19-0.78			
Phosphoethanolamine		0.26		0.15-0.64			
Phosphoserine	dl			<= 0.39			
Sarcosine (0.05			<= 0.15			

Dietary Peptide Related Markers

		Refe	rence Range
1-Methylhistidine	0.31		<= 1.64
β-Alanine	0.3		<= 0.7

The methodology for amino acid analysis has been changed to LCMSMS. Please note the reference ranges have been updated.

Step 3

Ship the specimen to the lab

Specimen must be returned in the Genova Diagnostics kit box for correct delivery to the lab. Not following these instructions may result in a shipping charge.

- Plan to ship the specimen Monday Friday overnight delivery.
- Call 1.800.GoFedEx (1.800.463.3339) to schedule shipping. When the automated system asks "How may I help you?" say "Return a Package". Tell the FedEx representative "I am using a billable stamp" and they will walk you through the process and make it easy.
- Make sure the tubes are tightly closed and identified with completed labels. Seal the tubes in the bubble wrap bag and put it into the Biohazard bag, and seal it securely.
- Lay the Biohazard bag with specimen on top of the freezer brick in the foam box. Secure the foam box lid with the rubber band.
- Slide the foam box back inside the kit box, and place the completed and signed requisition on top before closing. *Do not staple or tape the box.*
- Print your name and address in the section marked "From" on the prepaid shipping envelope label. DO NOT mark or write in any other sections.
- Put the kit box into the envelope and seal the envelope.

Jenova

Diagnostics

Improving Healthcare for Chronic Disease

• Keep your shipment and tracking numbers for future reference and tracking purposes.

Amino Acids Analysis, Plasma

 If any items are missing or expired, call Client Services at 800.522.4762 and press "1".

• Keep the kit box for shipping your specimen to the lab.

63 Zillicoa Street Asheville, NC 28801 800.522.4762 Fax: 828.252.9303 www.gdx.net

©2012 Genova Diagnostics IS-531,n,pi,a-306-p,061212

Step 1

Important things to know and consider

- Certain medicines may impact test results [e.g. adrenal steroids including corticosteroids, aminoglycoside antibiotics, amphetamines, antihistamines, cephalosporin-C and cephamycins (e.g. Cefoxitin), penicillin or Dpenicillamine, and phenothiazine derivatives].
- 4 Days before the test have the patient discontinue all of the following if medically appropriate: Non-essential medications including acetaminophen and over-the-counter cold remedies; any vitamins, minerals, amino acids, and herbal supplements taken regularly – including enhanced sports drinks, energy drinks, and vitamin waters.
- 24 hrs before the test: Instruct the patient to avoid eating or drinking any products containing aspartame (Nutra-Sweet, Equal, Spoonful) and monosodium glutamate (MSG), and avoid over-consuming any single food. Otherwise, instruct the patient to eat their usual diet.

Schedule & Prepare for the blood draw

- Sample processing must be completed within 15 minutes after blood draw.
- Have the patient fast overnight (at least 12 hours) prior to the blood draw.
- Contact FedEx and schedule to ship the specimen overnight delivery Monday - Friday. Sample must be received within 5 days of collection. Specimen MUST be completely frozen before shipping.
- Freeze the enclosed freezer brick a minimum of 8 hours before shipping.
- Complete the Requisition Form with all patient and billing information. Be sure it is signed by the Patient/Responsible Party and the healthcare provider.

Step 2:

Blood Draw & Specimen Preparation

Not following these instructions may affect the test results.

CAUTIONS: Do not spill, inhale, or ingest the white powder preservative. If the dust should get into your eyes or on your skin, flush with water for at least 15 minutes.

Write the patient's full name and the time and date of collection on each label. Attach a label to both the blue-top preservative tube and the yellow-top transfer tube.

Draw blood to fill the Na Heparin blue-top tube.

3 Mix the blood sample thoroughly by gently inverting the tube 5-10 times.

Centrifuge the sample for 15 minutes at 3000 rpm. *If the sample is visibly hemolyzed, a new sample must be collected.*

Transfer at least 2-ml plasma to the blue-top preservative tube. Avoid transferring red cells.

IMMEDIATELY **shake the preservative tube** very hard for at least 10-20 seconds. The sample should turn chunky and white as you mix.

Centrifuge the preserved tube for 5 minutes at 2500 rpm. For a tabletop centrifuge, spin for an additional 3-5 minutes. If specimen is cloudy or yellow, shake the sample again very hard and spin until clear.

Carefully transfer the clear supernatant into the yellow-top transfer tube, filling to the line shown on the tube (about 0.5-0.75 ml). Discard tube with white precipitate.

Place the yellow-top transfer tube into the bubblewrap bag. **Freeze sample immediately**. Keep sample completely frozen until ready to ship.

8

Complete the Requisition: Enter date in box labeled "Date Final Sample Collected".